当前位置:
X-MOL 学术
›
ACS Appl. Nano Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
MoS2 Nanoflowers Decorated with Au Nanoparticles for Visible-Light-Enhanced Gas Sensing
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2021-06-07 , DOI: 10.1021/acsanm.1c00847 Pei Chen 1 , Jinyong Hu 1 , Mengqi Yin 1 , Wangdi Bai 1 , Xiqi Chen 1 , Yong Zhang 1, 2
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2021-06-07 , DOI: 10.1021/acsanm.1c00847 Pei Chen 1 , Jinyong Hu 1 , Mengqi Yin 1 , Wangdi Bai 1 , Xiqi Chen 1 , Yong Zhang 1, 2
Affiliation
Highly sensitive and selective detection of trace nitrogen dioxide (NO2) in a complex outdoor air environment is an urgent need to guarantee human health and a beautiful environment. The effective combination of heterostructure and light irradiation is an important strategy to achieve high-performances gas sensors. However, the effect of light irradiation on gas-sensitive properties of heterostructure materials is not yet clear, and it is urgent to clarify the relationship between light irradiation and heterostructure for gas-sensing materials. Herein, a 530 nm-light-assisted Au–MoS2 gas sensor with a low detection limit as well as robust antihumidity interference ability is developed through introducing the localized surface plasmon resonance (LSPR) effect of Au nanoparticles (NPs). Under 530 nm light illumination, a Au–MoS2 gas sensor can achieve limit detection of NO2 as low as 10 ppb without operating temperature along with robust antihumidity ability. The optical simulation and experimental results show that the modification of MoS2 by Au NPs (diameter: 30 nm) combined with the matching light-assisted (530 nm) gas detection mode can make MoS2 fully absorb visible light and effectively improve the extinction cross section by taking full advantage of the LSPR effect, which is the primary reason for the enhanced performances of a MoS2-based gas sensor. This work provides theoretical and experimental guidance for gas sensors to effectively enhance the ability of gas detection by means of the light-assisted mode at room temperature, which opens up a unique approach to design high-performance gas sensors for trace-level gas detection.
中文翻译:
用 Au 纳米颗粒装饰的MoS 2纳米花用于可见光增强气体传感
对复杂的室外空气环境中痕量二氧化氮(NO 2)的高灵敏度和选择性检测是保障人类健康和美丽环境的迫切需要。异质结构和光照射的有效结合是实现高性能气体传感器的重要策略。然而,光辐照对异质结构材料气敏性能的影响尚不清楚,迫切需要阐明光辐照与气敏材料异质结构之间的关系。在此,530 nm 光辅助 Au-MoS 2通过引入 Au 纳米粒子 (NPs) 的局域表面等离子体共振 (LSPR) 效应,开发了具有低检测限和强大抗湿干扰能力的气体传感器。在 530 nm 光照射下,Au-MoS 2气体传感器可以在没有工作温度的情况下实现对低至 10 ppb的 NO 2 的极限检测以及强大的抗湿能力。光学模拟和实验结果表明,Au NPs(直径:30 nm)修饰MoS 2结合匹配的光辅助(530 nm)气体检测模式可以使MoS 2充分吸收可见光并充分利用LSPR效应有效改善消光截面,这是MoS 2基气体传感器性能增强的主要原因。该工作为气体传感器在室温下通过光辅助模式有效增强气体检测能力提供了理论和实验指导,为设计用于痕量级气体检测的高性能气体传感器开辟了独特的途径。
更新日期:2021-06-25
中文翻译:
用 Au 纳米颗粒装饰的MoS 2纳米花用于可见光增强气体传感
对复杂的室外空气环境中痕量二氧化氮(NO 2)的高灵敏度和选择性检测是保障人类健康和美丽环境的迫切需要。异质结构和光照射的有效结合是实现高性能气体传感器的重要策略。然而,光辐照对异质结构材料气敏性能的影响尚不清楚,迫切需要阐明光辐照与气敏材料异质结构之间的关系。在此,530 nm 光辅助 Au-MoS 2通过引入 Au 纳米粒子 (NPs) 的局域表面等离子体共振 (LSPR) 效应,开发了具有低检测限和强大抗湿干扰能力的气体传感器。在 530 nm 光照射下,Au-MoS 2气体传感器可以在没有工作温度的情况下实现对低至 10 ppb的 NO 2 的极限检测以及强大的抗湿能力。光学模拟和实验结果表明,Au NPs(直径:30 nm)修饰MoS 2结合匹配的光辅助(530 nm)气体检测模式可以使MoS 2充分吸收可见光并充分利用LSPR效应有效改善消光截面,这是MoS 2基气体传感器性能增强的主要原因。该工作为气体传感器在室温下通过光辅助模式有效增强气体检测能力提供了理论和实验指导,为设计用于痕量级气体检测的高性能气体传感器开辟了独特的途径。