当前位置:
X-MOL 学术
›
J. Chem. Eng. Data
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Liquid–Liquid-Phase Equilibrium for Quaternary Systems (n-Decane + 1-Tetradecene + 1-Methylnaphthalene + Sulfolane/Dimethyl Sulfoxide) for Separation of 1-Methylnaphthalene from FCC Diesel
Journal of Chemical & Engineering Data ( IF 2.0 ) Pub Date : 2021-06-06 , DOI: 10.1021/acs.jced.1c00194 Zenghui Wang 1 , Wenyang Fan 1 , Dongmei Xu 1 , Shanshan He 1 , Huiwen Huang 1 , Jun Gao 1 , Yinglong Wang 2
Journal of Chemical & Engineering Data ( IF 2.0 ) Pub Date : 2021-06-06 , DOI: 10.1021/acs.jced.1c00194 Zenghui Wang 1 , Wenyang Fan 1 , Dongmei Xu 1 , Shanshan He 1 , Huiwen Huang 1 , Jun Gao 1 , Yinglong Wang 2
Affiliation
Clean utilization of catalytically cracked diesel is of paramount importance in the industry. The separation of polycyclic aromatic hydrocarbons (PAHs) from catalytically cracked diesel can significantly reduce the content of aromatics and increase the cetane number to improve the quality of diesel. In this work, for extracting the PAH 1-methylnaphthalene from the model fluid catalytic cracking diesel, the liquid–liquid equilibrium phase behavior for the quaternary systems (n-decane + 1-tetradecene + 1-methylnaphthalene + sulfolane/dimethyl sulfoxide) were explored at 303.15, 323.15, and 343.15 K under 0.1 MPa. The separation performance was characterized by the separation factor and distribution coefficient. The results showed that sulfolane was a suitable extractant compared to DMSO. The reliability of the measured phase equilibrium data was evaluated by the Hand and Othmer–Tobias equations. The UNIQUAC and NRTL models were applied to fit the tie-line data of the investigated mixtures with the AARD and rmsd lower than 0.01. The intermolecular interaction was explored by the σ-profile analysis to compare the separation performance of sulfolane and DMSO.
中文翻译:
用于从 FCC 柴油中分离 1-甲基萘的四元系统(正癸烷 + 1-十四碳烯 + 1-甲基萘 + 环丁砜/二甲基亚砜)的液-液相平衡
催化裂化柴油的清洁利用在工业中至关重要。从催化裂化柴油中分离多环芳烃(PAHs)可以显着降低芳烃含量,提高十六烷值,提高柴油质量。在这项工作中,为了从模型流化催化裂化柴油中提取 PAH 1-甲基萘,四元体系的液-液平衡相行为 ( n-癸烷 + 1-十四烯 + 1-甲基萘 + 环丁砜/二甲亚砜)在 303.15、323.15 和 343.15 K 和 0.1 MPa 下进行了探索。分离性能由分离因子和分配系数表征。结果表明,与 DMSO 相比,环丁砜是一种合适的萃取剂。测量的相平衡数据的可靠性通过 Hand 和 Othmer-Tobias 方程进行评估。应用 UNIQUAC 和 NRTL 模型来拟合所研究混合物的连接线数据,其中 AARD 和 rmsd 低于 0.01。通过 σ-profile 分析探索分子间相互作用,以比较环丁砜和 DMSO 的分离性能。
更新日期:2021-07-08
中文翻译:
用于从 FCC 柴油中分离 1-甲基萘的四元系统(正癸烷 + 1-十四碳烯 + 1-甲基萘 + 环丁砜/二甲基亚砜)的液-液相平衡
催化裂化柴油的清洁利用在工业中至关重要。从催化裂化柴油中分离多环芳烃(PAHs)可以显着降低芳烃含量,提高十六烷值,提高柴油质量。在这项工作中,为了从模型流化催化裂化柴油中提取 PAH 1-甲基萘,四元体系的液-液平衡相行为 ( n-癸烷 + 1-十四烯 + 1-甲基萘 + 环丁砜/二甲亚砜)在 303.15、323.15 和 343.15 K 和 0.1 MPa 下进行了探索。分离性能由分离因子和分配系数表征。结果表明,与 DMSO 相比,环丁砜是一种合适的萃取剂。测量的相平衡数据的可靠性通过 Hand 和 Othmer-Tobias 方程进行评估。应用 UNIQUAC 和 NRTL 模型来拟合所研究混合物的连接线数据,其中 AARD 和 rmsd 低于 0.01。通过 σ-profile 分析探索分子间相互作用,以比较环丁砜和 DMSO 的分离性能。