当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
In Situ Synthesis of the Peapod-Like Cu–SnO2@Copper Foam as Anode with Excellent Cycle Stability and High Area Specific Capacity
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-06-03 , DOI: 10.1002/adfm.202101999
Wenbo Liu 1 , Bobo Lu 1 , Xiangjiang Liu 1 , Yi Gan 1 , Shichao Zhang 2 , Sanqiang Shi 3
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-06-03 , DOI: 10.1002/adfm.202101999
Wenbo Liu 1 , Bobo Lu 1 , Xiangjiang Liu 1 , Yi Gan 1 , Shichao Zhang 2 , Sanqiang Shi 3
Affiliation
![]() |
The theoretical specific capacity of tin oxide (SnO2) anode material is more than twice that of graphite material (782 vs 372 mAh g–1), whereas its potential usage is limited fatally by its huge volume expansion during lithiation. An effective solution is to encapsulate tin oxide into hollow structure such as yolk-shell based on the principle of confinement. However, in light of the restricted space of active substance, this kind of hollow electrode always has the low capacity, severely limiting its commercial value. Herein, a peapod-like Cu-SnO2@copper foam (CF) as high area specific capacity anode based on the Kirkendall effect, in which the “pod and peas” in the peapod-like structure are composed of SnO2 and Cu nanoparticles, respectively, is tactfully designed and constructed. Compared to other SnOx-based electrodes with different hollow structure designs in published reports, the unique peapod-like Cu-SnO2@CF anode delivers a remarkably high first reversible capacity of 5.80 mAh cm-2 as well as excellent cycle stability with 66.7% capacity retention and ≈100% coulombic efficiency after 200 cycles at a current density of 1 mA cm–2, indicative of its quite promising application toward high-performance lithium-ion batteries.
中文翻译:
原位合成具有优异循环稳定性和高面积比容量的豆荚状 Cu-SnO2@Copper Foam 作为阳极
氧化锡 (SnO 2 ) 负极材料的理论比容量是石墨材料的两倍以上(782 vs 372 mAh g –1),但其潜在用途受到锂化过程中巨大体积膨胀的致命限制。一种有效的解决方案是基于限制原理将氧化锡封装成蛋黄-壳等中空结构。然而,由于活性物质的空间有限,这种空心电极的容量始终较低,严重限制了其商业价值。在此,基于柯肯德尔效应的豆荚状Cu-SnO 2 @泡沫铜(CF)作为高面积比容量阳极,其中豆荚状结构中的“豆荚和豌豆”由SnO 2组成和 Cu 纳米粒子分别经过巧妙设计和构建。与已发表的报告中具有不同中空结构设计的其他 SnO x基电极相比,独特的豆荚状 Cu-SnO 2 @CF 阳极提供了 5.80 mAh cm -2的非常高的首次可逆容量以及出色的循环稳定性(66.7)在 1 mA cm –2的电流密度下循环 200 次后的容量保持率和 ≈100% 的库仑效率,表明其在高性能锂离子电池方面的应用前景广阔。
更新日期:2021-06-03
中文翻译:

原位合成具有优异循环稳定性和高面积比容量的豆荚状 Cu-SnO2@Copper Foam 作为阳极
氧化锡 (SnO 2 ) 负极材料的理论比容量是石墨材料的两倍以上(782 vs 372 mAh g –1),但其潜在用途受到锂化过程中巨大体积膨胀的致命限制。一种有效的解决方案是基于限制原理将氧化锡封装成蛋黄-壳等中空结构。然而,由于活性物质的空间有限,这种空心电极的容量始终较低,严重限制了其商业价值。在此,基于柯肯德尔效应的豆荚状Cu-SnO 2 @泡沫铜(CF)作为高面积比容量阳极,其中豆荚状结构中的“豆荚和豌豆”由SnO 2组成和 Cu 纳米粒子分别经过巧妙设计和构建。与已发表的报告中具有不同中空结构设计的其他 SnO x基电极相比,独特的豆荚状 Cu-SnO 2 @CF 阳极提供了 5.80 mAh cm -2的非常高的首次可逆容量以及出色的循环稳定性(66.7)在 1 mA cm –2的电流密度下循环 200 次后的容量保持率和 ≈100% 的库仑效率,表明其在高性能锂离子电池方面的应用前景广阔。