当前位置: X-MOL 学术Adv. Opt. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unprecedented Thermal Stability of Plasmonic Titanium Nitride Films up to 1400 °C
Advanced Optical Materials ( IF 8.0 ) Pub Date : 2021-05-29 , DOI: 10.1002/adom.202100323
Tobias Krekeler 1 , Surya S. Rout 1 , Gnanavel V. Krishnamurthy 2 , Michael Störmer 2 , Mahima Arya 3 , Ankita Ganguly 3 , Duncan S. Sutherland 4 , Sergey I. Bozhevolnyi 5 , Martin Ritter 1 , Kjeld Pedersen 6 , Alexander Yu Petrov 2, 3, 7 , Manfred Eich 2, 3 , Manohar Chirumamilla 3
Affiliation  

Titanium nitride (TiN) has emerged as one of the most promising refractory materials for plasmonic and photonic applications at high temperatures due to its prominent optical properties along with mechanical and thermal stability. From a high temperature standpoint, TiN is a substitution for Au and Ag in the visible to near-infrared wavelength range, with potential applications including thermophotovoltaics, thermoplasmonics, hot-electron and high temperature reflective coatings. However, the optical properties and thermal stability of TiN films strongly depend on the growth conditions, such as temperature, partial pressure of the reactive ion gas, ion energy, and substrate orientation. In this work, epitaxial TiN films are grown at 835 °C on an Al2O3 substrate using a radio frequency sputtering method. The oxidization behavior of TiN is investigated at 1000 °C under a medium vacuum condition of 2 × 10–3 mbar, which is relevant for practical technical applications, and the thermal stability at 1400 °C under a high vacuum condition of 2 × 10–6 mbar. The TiN film structure shows an unprecedented structural stability at 1000 °C for a minimum duration of 2 h under a medium vacuum condition, and an exceptional thermal stability at 1400 °C, for 8 h under a high vacuum condition, without any protective coating layer. The work reveals, for the first time to the authors’ knowledge, that the TiN film structure with columnar grains exhibits remarkable thermal stability at 1400 °C due to low-index interfaces and twin boundaries. These findings unlock the fundamental understanding of the TiN material at extreme temperatures and demonstrate a key step towards fabricating thermally stable photonic/plasmonic devices for harsh environments.

中文翻译:

高达 1400 °C 的等离子体氮化钛薄膜具有前所未有的热稳定性

氮化钛 (TiN) 由于其突出的光学性能以及机械和热稳定性,已成为高温等离子体和光子应用中最有前途的耐火材料之一。从高温的角度来看,TiN 是可见光到近红外波长范围内 Au 和 Ag 的替代品,其潜在应用包括热光伏、热等离子体、热电子和高温反射涂层。然而,TiN 薄膜的光学性能和热稳定性在很大程度上取决于生长条件,如温度、反应离子气体的分压、离子能量和衬底取向。在这项工作中,外延 TiN 薄膜在 835 °C 下生长在 Al 2 O 3基片采用射频溅射法。锡的氧化行为在1000℃下2×10的一个介质真空条件下研究-3毫巴,这是相关的实用技术应用,以及热稳定性在1400℃下的2×10的高真空条件下- 6毫巴。TiN 薄膜结构在 1000 °C 下在中等真空条件下至少持续 2 小时显示出前所未有的结构稳定性,在 1400 °C 下在高真空条件下保持 8 小时具有出色的热稳定性,无需任何保护涂层. 据作者所知,这项工作首次揭示,由于低指数界面和孪晶界,具有柱状晶粒的 TiN 膜结构在 1400 °C 下表现出显着的热稳定性。这些发现开启了对极端温度下 TiN 材料的基本理解,并展示了为恶劣环境制造热稳定光子/等离子体器件的关键一步。
更新日期:2021-05-29
down
wechat
bug