当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
GSH-Depleted Nanozymes with Dual-Radicals Enzyme Activities for Tumor Synergic Therapy
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-05-28 , DOI: 10.1002/adfm.202102160 Shengming Wu 1 , Peng Wang 1 , Jingwen Qin 1 , Yanbai Pei 1 , Yilong Wang 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-05-28 , DOI: 10.1002/adfm.202102160 Shengming Wu 1 , Peng Wang 1 , Jingwen Qin 1 , Yanbai Pei 1 , Yilong Wang 1
Affiliation
Although inspiring progress has been achieved in tumor nanocatalytic therapies based on tailor-made nanozymes for converting hydrogen peroxide into reactive oxygen species (ROS) efficiently, most cytotoxic hydroxyl radicals do not spread far enough within a cell to damage the primary organelles for effective tumor therapy due to their short half-life time (≈1 µs). Developing a novel nanocatalyst platform involving longer half-life time ROS is desired. To this end, Fe3O4-Schwertmannite nanocomposites (Fe3O4-Sch) with triple-effect tumor therapy are constructed through a facile method. The Schwertmannite shell converts the •OH produced by Fe3O4 via the Fenton reaction into sulfate radicals with a longer half-life time (30 µs). Combination of dual radicals exhibits overwhelming tumor inhibition efficacy. The nanocomposites also show the multifunctionality of good photothermal efficiency (33.2%) and synergistic oxidative stress amplification upon glutathione biosynthesis (GSH) depletion by the l-buthionine sulfoximine (BSO) molecules loaded in the hollow Fe3O4 cores. The comprehensive properties of the nanoplatform including the dual-radical production, Fe3O4 nanocrystal mediated PTT, and the BSO mediated GSH depletion result in remarkable tumor inhibition both in vitro and in vivo, which may pave a way to constructing a synergic catalytic nanoplatform for efficient tumor therapy.
中文翻译:
具有双自由基酶活性的 GSH 耗尽纳米酶用于肿瘤协同治疗
尽管基于定制纳米酶的肿瘤纳米催化疗法已经取得了鼓舞人心的进展,可有效地将过氧化氢转化为活性氧 (ROS),但大多数细胞毒性羟基自由基在细胞内扩散得不够远,无法破坏主要细胞器以进行有效的肿瘤治疗由于它们的半衰期很短 (≈1 µs)。需要开发一种涉及更长半衰期 ROS 的新型纳米催化剂平台。为此,通过简便的方法构建了具有三效肿瘤治疗的Fe 3 O 4 -Schwertmannite 纳米复合材料(Fe 3 O 4 -Sch)。Schwertmannite 壳将Fe 3 O 4产生的• OH转化为通过芬顿反应转化为具有更长半衰期 (30 µs) 的硫酸根。双自由基的组合表现出压倒性的肿瘤抑制功效。纳米复合材料还显示出良好的光热效率 (33.2%) 和协同氧化应激放大的多功能性,即在空心 Fe 3 O 4核中加载的l-丁硫氨酸亚砜亚胺 (BSO) 分子消耗谷胱甘肽生物合成 (GSH) 时。纳米平台的综合性能,包括双自由基生成、Fe 3 O 4 纳米晶体介导的 PTT 和 BSO 介导的 GSH 消耗导致显着的体外和体内肿瘤抑制,这可能为构建协同催化纳米平台以有效治疗肿瘤铺平道路。
更新日期:2021-08-05
中文翻译:
具有双自由基酶活性的 GSH 耗尽纳米酶用于肿瘤协同治疗
尽管基于定制纳米酶的肿瘤纳米催化疗法已经取得了鼓舞人心的进展,可有效地将过氧化氢转化为活性氧 (ROS),但大多数细胞毒性羟基自由基在细胞内扩散得不够远,无法破坏主要细胞器以进行有效的肿瘤治疗由于它们的半衰期很短 (≈1 µs)。需要开发一种涉及更长半衰期 ROS 的新型纳米催化剂平台。为此,通过简便的方法构建了具有三效肿瘤治疗的Fe 3 O 4 -Schwertmannite 纳米复合材料(Fe 3 O 4 -Sch)。Schwertmannite 壳将Fe 3 O 4产生的• OH转化为通过芬顿反应转化为具有更长半衰期 (30 µs) 的硫酸根。双自由基的组合表现出压倒性的肿瘤抑制功效。纳米复合材料还显示出良好的光热效率 (33.2%) 和协同氧化应激放大的多功能性,即在空心 Fe 3 O 4核中加载的l-丁硫氨酸亚砜亚胺 (BSO) 分子消耗谷胱甘肽生物合成 (GSH) 时。纳米平台的综合性能,包括双自由基生成、Fe 3 O 4 纳米晶体介导的 PTT 和 BSO 介导的 GSH 消耗导致显着的体外和体内肿瘤抑制,这可能为构建协同催化纳米平台以有效治疗肿瘤铺平道路。