当前位置:
X-MOL 学术
›
Green Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions
Green Chemistry ( IF 9.3 ) Pub Date : 2021-5-21 , DOI: 10.1039/d1gc00914a Yuechao Yang 1, 2, 3, 4 , Tiancheng Mu 1, 2, 3, 4
Green Chemistry ( IF 9.3 ) Pub Date : 2021-5-21 , DOI: 10.1039/d1gc00914a Yuechao Yang 1, 2, 3, 4 , Tiancheng Mu 1, 2, 3, 4
Affiliation
Electrochemical conversion is emerging as a powerful and promising method to produce a wide range of high-value chemicals on account of mild operation conditions, controllable selectivity, and scalability. 5-Hydroxymethylfurfural (HMF), with simple molecular structures including furan rings, –CO, and –OH groups, is considered one of the most versatile platform molecules. The electrooxidation of bio-based HMF to furandicarboxylic acid (FDCA), a crucial bio-based precursor of polyethylene furanoate (PEF), which would probably replace petroleum-based polyethylene terephthalate (PET), has recently attracted increasing attention. Here, we review the HMF electrochemical oxidation, from reaction pathway/mechanism to catalysts and coupling reactions. First, a pH-dependent reaction pathway is proposed, and the reaction mechanism (direct oxidation and indirect oxidation) is summarized systematically, which is also suitable for electrochemical oxidation of other small organic molecules containing aldehyde/alcohol groups (e.g., methanol, ethanol, glycerol, and glucose) to some extent. Then, the progress, advantages and disadvantages of HMF electrooxidation catalysts of noble metals, non-noble metals, and non-metals are reviewed, particularly on non-noble metal catalysts. Furthermore, for more efficient energy utilization, HMF electrooxidation coupled with H2 evolution, CO2 reduction, N2 reduction, and organic reduction are discussed. Finally, a few unique insights into reaction mechanism, an assessment about catalyst performance and an outlook for further development of this topic are provided. This review can offer a guideline for the in-depth understanding of electrochemical oxidation of small organic molecules as well as the design of advanced anodic electrocatalysts towards the utilization and production of renewable resources.
中文翻译:
生物质衍生的5-羟甲基糠醛(HMF)的电化学氧化:途径,机理,催化剂和偶联反应
由于温和的操作条件,可控的选择性和可扩展性,电化学转化正成为一种强大而有前途的方法,可以生产各种高价值的化学品。5-羟甲基糠醛(HMF),具有简单的分子结构,包括呋喃环,-CO和–OH基团被认为是最通用的平台分子之一。近年来,基于生物的HMF氧化为呋喃二甲酸(FDCA),这是一种重要的基于生物的聚呋喃酸酯(PEF),可能会取代石油基的聚对苯二甲酸乙二醇酯(PET)。在这里,我们回顾了HMF电化学氧化,从反应途径/机理到催化剂和偶联反应。首先,提出了pH依赖的反应途径,系统地总结了反应机理(直接氧化和间接氧化),也适用于其他含有醛/醇基的有机小分子的电化学氧化(例如:,甲醇,乙醇,甘油和葡萄糖)。然后,综述了贵金属,非贵金属和非金属的HMF电氧化催化剂的进展,优缺点,特别是在非贵金属催化剂上。此外,为了更有效地利用能源,HMF电氧化与H 2析出,CO 2还原,N 2结合还原和有机还原的讨论。最后,提供了对反应机理的一些独特见解,对催化剂性能的评估以及对该主题的进一步发展的展望。这篇综述可以为深入理解有机小分子的电化学氧化以及为利用和生产可再生资源设计高级阳极电催化剂提供指导。
更新日期:2021-05-26
中文翻译:
生物质衍生的5-羟甲基糠醛(HMF)的电化学氧化:途径,机理,催化剂和偶联反应
由于温和的操作条件,可控的选择性和可扩展性,电化学转化正成为一种强大而有前途的方法,可以生产各种高价值的化学品。5-羟甲基糠醛(HMF),具有简单的分子结构,包括呋喃环,-CO和–OH基团被认为是最通用的平台分子之一。近年来,基于生物的HMF氧化为呋喃二甲酸(FDCA),这是一种重要的基于生物的聚呋喃酸酯(PEF),可能会取代石油基的聚对苯二甲酸乙二醇酯(PET)。在这里,我们回顾了HMF电化学氧化,从反应途径/机理到催化剂和偶联反应。首先,提出了pH依赖的反应途径,系统地总结了反应机理(直接氧化和间接氧化),也适用于其他含有醛/醇基的有机小分子的电化学氧化(例如:,甲醇,乙醇,甘油和葡萄糖)。然后,综述了贵金属,非贵金属和非金属的HMF电氧化催化剂的进展,优缺点,特别是在非贵金属催化剂上。此外,为了更有效地利用能源,HMF电氧化与H 2析出,CO 2还原,N 2结合还原和有机还原的讨论。最后,提供了对反应机理的一些独特见解,对催化剂性能的评估以及对该主题的进一步发展的展望。这篇综述可以为深入理解有机小分子的电化学氧化以及为利用和生产可再生资源设计高级阳极电催化剂提供指导。