当前位置: X-MOL 学术Mater. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrogen bond reinforced, transparent polycaprolactone-based degradable polyurethane
Materials Chemistry Frontiers ( IF 6.0 ) Pub Date : 2021-5-8 , DOI: 10.1039/d1qm00476j
Qianyun Zhong 1, 2, 3, 4 , Xingxing Chen 1, 2, 3, 4 , Yuxuan Yang 2, 3, 4, 5, 6 , Chenhui Cui 1, 2, 3, 4 , Li Ma 1, 2, 3, 4 , Zhen Li 1, 2, 3, 4 , Qiang Zhang 1, 2, 3, 4 , Xiaoming Chen 2, 4, 7, 8, 9 , Yilong Cheng 1, 2, 3, 4 , Yanfeng Zhang 1, 2, 3, 4
Affiliation  

Transparent and degradable polyurethane elastomers with high strength and toughness are in demand for various applications, such as tissue engineering and flexible electronics. However, designing specific chemical structures is challenging, and thus fabricating novel elastomers is sometimes unattainable. An effective approach to develop elastomers is through the introduction of sacrificial bonds, e.g. hydrogen bonds, to enhance their mechanical properties and toughness, which provide hidden lengths and hierarchical structures for energy dissipation. This study introduced a facile and efficient strategy by employing imidazolidinyl urea (IU) as a multiple hydrogen-bonding motif to fabricate transparent and degradable polyurethane elastomers (PHI) with superior breaking strength and excellent toughness. The resultant breaking strength and toughness reached up to 24.9 MPa and 168.2 MJ m−3, respectively. Additionally, the breaking strength increased to 49.9 MPa after the sample was pre-stretched to 600% strain due to strain-induced crystallization (SIC). Moreover, the PHI film with degradability and good biocompatibility showed potential application in post-operative anti-adhesion.

中文翻译:

氢键增强的透明聚己内酯基可降解聚氨酯

具有高强度和韧性的透明且可降解的聚氨酯弹性体对于诸如组织工程和柔性电子学的各种应用是需求的。但是,设计特定的化学结构具有挑战性,因此有时无法获得新型的弹性体。开发弹性体的有效方法是通过引入牺牲键,例如氢键,以增强其机械性能和韧性,从而提供隐藏的长度和分层结构以进行能量消散。这项研究通过使用咪唑烷基二脲(IU)作为多重氢键基序,以制造具有优异的断裂强度和优异的韧性的透明可降解聚氨酯弹性体(PHI),引入了一种简便而有效的策略。所得的断裂强度和韧性分别达到24.9MPa和168.2MJm -3。此外,由于应变诱导结晶(SIC),样品被预拉伸至600%应变后,断裂强度增加到49.9 MPa。此外,具有降解性和良好的生物相容性的PHI膜在术后抗粘连方面具有潜在的应用前景。
更新日期:2021-05-25
down
wechat
bug