当前位置: X-MOL 学术Inform. Fusion › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
可解释人工智能的可解释性概念和评估方法
Information Fusion ( IF 14.7 ) Pub Date : 2021-05-25 , DOI: 10.1016/j.inffus.2021.05.009
Giulia Vilone , Luca Longo

可解释人工智能 (XAI) 在过去几年中经历了显着增长。这是由于机器学习,特别是深度学习的广泛应用,导致了缺乏可解释性和可解释性的高度准确模型的发展。已经提出、开发和测试了大量解决这个问题的方法,同时还有几项研究试图定义可解释性的概念及其评估。该系统评价通过分层系统对所有科学研究进行聚类,该系统对与可解释性概念和 XAI 方法的评估方法相关的理论和概念进行分类,从而为知识体系做出贡献。这种层次结构的结构建立在对现有分类法和同行评审科学材料的详尽分析之上。调查结果表明,学者们已经确定了解释应该满足的许多概念和要求,以便最终用户容易理解并提供可以指导决策的可操作信息。他们还提出了各种方法来评估机器生成的解释在多大程度上满足这些需求。总的来说,这些方法可以归结为以人为本的评估和具有更客观指标的评估。然而,尽管围绕可解释性概念发展了大量知识,但学者们对于如何定义解释以及如何评估其有效性和可靠性并没有达成普遍共识。最终,





"点击查看英文标题和摘要"

更新日期:2021-06-01
down
wechat
bug