当前位置:
X-MOL 学术
›
J. Causal Inference
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
激进经验主义与机器学习研究
Journal of Causal Inference ( IF 1.7 ) Pub Date : 2021-01-01 , DOI: 10.1515/jci-2021-0006 Judea Pearl 1
Journal of Causal Inference ( IF 1.7 ) Pub Date : 2021-01-01 , DOI: 10.1515/jci-2021-0006 Judea Pearl 1
Affiliation
我从三个方面对数据科学的“数据拟合”与“数据解释”方法进行了对比:权宜,透明和可解释性。“数据拟合”是由这样一种信念驱动的,即理性决策的秘诀在于数据本身。相反,数据解释学校并不将数据视为唯一的知识来源,而是将其视为解释现实的辅助手段,而“现实”则代表生成数据的过程。我主张在因果逻辑的指导下,通过任务依赖的拟合与解释共生来恢复与数据科学的平衡。
"点击查看英文标题和摘要"
更新日期:2021-01-01
"点击查看英文标题和摘要"