当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boosting the thermoelectric performance of n-type Bi2S3 by hierarchical structure manipulation and carrier density optimization
Nano Energy ( IF 16.8 ) Pub Date : 2021-05-21 , DOI: 10.1016/j.nanoen.2021.106171
Wenting Ji , Xiao-Lei Shi , Wei-Di Liu , Hualei Yuan , Kun Zheng , Biao Wan , Weixia Shen , Zhuangfei Zhang , Chao Fang , Qianqian Wang , Liangchao Chen , Yuewen Zhang , Xiaopeng Jia , Zhi-Gang Chen

Te-free Bi2S3-based thermoelectric materials show great potential for eco-friendly and industrial scale-up applications because of their high-abundance, low-cost, low-toxicity, and low-thermal-conductivity features. However, their low figure of merit, ZT limits their further applications. In this work, we report a high ZT of ~0.8 at ~760 K in n-type polycrystalline Bi2S3 by a combination of hierarchical structure manipulation and carrier density optimization. A step-by-step fabrication by using mechanical alloying, high-pressure and high-temperature treatment, spark plasma sintering, and annealing leads to unique micro/nanostructures in polycrystalline Bi2S3 including refined grains, high-density Bi-rich nanoprecipitates, significant lattice distortions, and nanopores that confirmed by comprehensive characterizations, which contribute to significantly suppressed lattice thermal conductivity of 0.41 W m−1 K−1 at ~760 K. A further 0.5 mol% CuCl2-doping triggers impurity band in the electronic structure of Bi2S3 and narrows the bandgap for optimizing the carrier concentration at ~1 × 1020 cm−3, confirmed by both experimental results and first-principles density functional theory calculations. The optimized carrier concentration and maintained low lattice thermal conductivity give rise to a high power factor of ~5.3 μW cm−1 K−2 and high ZT that ranks as a top value. This work provides a new route to achieve high thermoelectric performance in n-type polycrystalline Bi2S3.



中文翻译:

通过分层结构操纵和载流子密度优化来提高n型Bi 2 S 3的热电性能

不含Te的Bi 2 S 3基热电材料具有高丰度,低成本,低毒性和低导热性的特点,因此在生态友好型和工业规模化应用中显示出巨大潜力。但是,由于ZT的低品质因数,限制了它们的进一步应用。在这项工作中,我们通过结合分层结构操作和载流子密度优化,在n型多晶Bi 2 S 3中报告了在〜760 K时〜0.8的高ZT。通过机械合金化,高压和高温处理,火花等离子体烧结和退火的分步制造,可以在多晶Bi 2 S中产生独特的微观/纳米结构3个样品,包括精炼晶粒,高密度的富含Bi的纳米沉淀,明显的晶格畸变和通过综合表征证实的纳米孔,这有助于在〜760 K时显着抑制0.41 W m -1 K -1的晶格导热率。进一步0.5 mol%CuCl 2掺杂会触发Bi 2 S 3电子结构中的杂质带,并缩小能带隙,以优化〜1×10 20 cm -3的载流子浓度由实验结果和第一性原理密度泛函理论计算所证实。优化的载流子浓度和保持的低晶格导热率导致〜5.3μWcm -1 K -2的高功率因数和最高ZT成为最高值。这项工作为在n型多晶Bi 2 S 3中实现高热电性能提供了一条新途径。

更新日期:2021-05-25
down
wechat
bug