当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Increasing Stability of SnO2-Based Perovskite Solar Cells by Introducing an Anionic Conjugated Polyelectrolyte for Interfacial Adjustment
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-05-19 , DOI: 10.1021/acsami.1c00410 Chao Tan 1 , Wenting Xu 1 , Yihong Huan 1 , Bo Wu 1 , Tianshi Qin 1 , Deqing Gao 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-05-19 , DOI: 10.1021/acsami.1c00410 Chao Tan 1 , Wenting Xu 1 , Yihong Huan 1 , Bo Wu 1 , Tianshi Qin 1 , Deqing Gao 1
Affiliation
Despite the fact that power conversion efficiency (PCE) has been greatly improved in recent years, perovskite solar cells (PSCs) need to overcome some challenges, like stability, for the commercial application. Herein, an anionic conjugated polyelectrolyte, sulfonic-containing polyfluorene (abbreviated to SPF), has been developed to modify the interface between the electron-transporting layer (ETL) SnO2 and the optoelectronic active layer MAPbI3 in the n-i-p cells. After 40 days of storage in atmospheric environment in the dark with exposure to a controlled humidity of about 10%, PCE of the SPF-modified cells with the structure of ITO/SnO2/SPF/MAPbI3/spiro-OMeTAD/Au still remained 94% of the initial value. In contrast, the control cell without SPF only remained 31.1% of its initial efficiency after 29 days. The main reason for the stability enhancement is the adjustment of interfacial energy level, the crystallinity enhancement, and the removal of the interfacial defect of the perovskite layer by introducing the hydrophobic and smooth SPF interfacial layer. Deep electrical study on the PSCs discloses that the cell has low carrier transfer resistance, low leakage current density, and minor interfacial charge accumulation. What’s more, the short-circuit current density is improved, and PCE of 20.47% is achieved.
中文翻译:
通过引入用于界面调节的阴离子共轭聚电解质来提高基于SnO 2的钙钛矿太阳能电池的稳定性
尽管近年来功率转换效率 (PCE) 已大大提高,但钙钛矿太阳能电池 (PSC) 需要克服一些挑战,例如稳定性,才能实现商业应用。这里,阴离子型共轭聚电解质,含磺酸-聚芴(缩写为SPF),已经发展到修改的SnO电子输送层(ETL)之间的界面2和光电活性层MAPbI 3在压区的细胞。ITO/SnO 2 /SPF/MAPbI 3结构的 SPF 改性电池在大气环境中在黑暗中储存 40 天后,暴露在约 10% 的受控湿度下,其 PCE/spiro-OMeTAD/Au 仍然保持初始值的 94%。相比之下,没有 SPF 的对照电池在 29 天后仅保持其初始效率的 31.1%。稳定性增强的主要原因是界面能级的调整,结晶度的增强,以及通过引入疏水和光滑的SPF界面层去除钙钛矿层的界面缺陷。对 PSC 的深入电学研究表明,该电池具有低载流子转移电阻、低漏电流密度和少量界面电荷积累。更重要的是,短路电流密度提高,PCE达到20.47%。
更新日期:2021-06-02
中文翻译:
通过引入用于界面调节的阴离子共轭聚电解质来提高基于SnO 2的钙钛矿太阳能电池的稳定性
尽管近年来功率转换效率 (PCE) 已大大提高,但钙钛矿太阳能电池 (PSC) 需要克服一些挑战,例如稳定性,才能实现商业应用。这里,阴离子型共轭聚电解质,含磺酸-聚芴(缩写为SPF),已经发展到修改的SnO电子输送层(ETL)之间的界面2和光电活性层MAPbI 3在压区的细胞。ITO/SnO 2 /SPF/MAPbI 3结构的 SPF 改性电池在大气环境中在黑暗中储存 40 天后,暴露在约 10% 的受控湿度下,其 PCE/spiro-OMeTAD/Au 仍然保持初始值的 94%。相比之下,没有 SPF 的对照电池在 29 天后仅保持其初始效率的 31.1%。稳定性增强的主要原因是界面能级的调整,结晶度的增强,以及通过引入疏水和光滑的SPF界面层去除钙钛矿层的界面缺陷。对 PSC 的深入电学研究表明,该电池具有低载流子转移电阻、低漏电流密度和少量界面电荷积累。更重要的是,短路电流密度提高,PCE达到20.47%。