Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Annealing-Free, High-Performance Perovskite Solar Cells by Controlling Crystallization via Guanidinium Cation Doping
Solar RRL ( IF 6.0 ) Pub Date : 2021-05-18 , DOI: 10.1002/solr.202100097 Hang Dong 1, 2 , Shangzheng Pang 1 , Fengqin He 1 , Haifeng Yang 2 , Weidong Zhu 1, 2 , Dazheng Chen 1, 2 , He Xi 1, 3 , Jincheng Zhang 1, 2 , Yue Hao 1 , Chunfu Zhang 1, 2
Solar RRL ( IF 6.0 ) Pub Date : 2021-05-18 , DOI: 10.1002/solr.202100097 Hang Dong 1, 2 , Shangzheng Pang 1 , Fengqin He 1 , Haifeng Yang 2 , Weidong Zhu 1, 2 , Dazheng Chen 1, 2 , He Xi 1, 3 , Jincheng Zhang 1, 2 , Yue Hao 1 , Chunfu Zhang 1, 2
Affiliation
One of the urgent key points to realize the commercialization of perovskite solar cells (PSCs) with robust and excellent performance is the fabrication of high-quality perovskite film. Nevertheless, a traditional thermal annealing (TA) technology is always necessary for a high crystallization perovskite film, and previous reports have suggested that TA could induce heterogeneous nucleation which is inconducive for the formation of smooth and uniform perovskite film, as well as time and cost consuming. Herein, an approach for the annealing-free high-quality perovskite film via the introduction of guanidinium iodine (GAI) is proposed. The organic molecule guanidinium (GA+) has a large ionic radius, and this could control the crystallizing rate of annealing-free perovskite film. Ultimately, a perovskite film with larger grain size and lower defect density is acquired through doping 0.10 mol mL−1 GAI in the precursor solution. Moreover, the fabrication of the electron transfer layer and hole transfer layer is further realized at room temperature. Thus, all room temperature, annealing-free high-performance PSCs are demonstrated. Notably, a GAI-doped device with an outstanding power conversion efficiency (PCE) of 19.25% is obtained, much higher than 16.78% of the pristine device.
中文翻译:
通过胍阳离子掺杂控制结晶的免退火、高性能钙钛矿太阳能电池
实现具有稳健和优异性能的钙钛矿太阳能电池 (PSC) 商业化的紧迫关键点之一是制造高质量的钙钛矿薄膜。然而,传统的热退火 (TA) 技术对于高结晶钙钛矿薄膜始终是必要的,之前的报道表明,TA 可以诱导异质成核,这不利于形成光滑均匀的钙钛矿薄膜,以及时间和成本消耗。在此,提出了一种通过引入碘胍(GAI)制备免退火高质量钙钛矿薄膜的方法。有机分子胍(GA +) 具有较大的离子半径,这可以控制免退火钙钛矿薄膜的结晶速率。最终,通过在前体溶液中掺杂 0.10 mol mL -1 GAI获得具有更大晶粒尺寸和更低缺陷密度的钙钛矿薄膜。此外,电子传输层和空穴传输层的制备进一步在室温下实现。因此,展示了所有室温、无退火的高性能 PSC。值得注意的是,获得了具有 19.25% 出色功率转换效率 (PCE) 的 GAI 掺杂器件,远高于原始器件的 16.78%。
更新日期:2021-07-09
中文翻译:
通过胍阳离子掺杂控制结晶的免退火、高性能钙钛矿太阳能电池
实现具有稳健和优异性能的钙钛矿太阳能电池 (PSC) 商业化的紧迫关键点之一是制造高质量的钙钛矿薄膜。然而,传统的热退火 (TA) 技术对于高结晶钙钛矿薄膜始终是必要的,之前的报道表明,TA 可以诱导异质成核,这不利于形成光滑均匀的钙钛矿薄膜,以及时间和成本消耗。在此,提出了一种通过引入碘胍(GAI)制备免退火高质量钙钛矿薄膜的方法。有机分子胍(GA +) 具有较大的离子半径,这可以控制免退火钙钛矿薄膜的结晶速率。最终,通过在前体溶液中掺杂 0.10 mol mL -1 GAI获得具有更大晶粒尺寸和更低缺陷密度的钙钛矿薄膜。此外,电子传输层和空穴传输层的制备进一步在室温下实现。因此,展示了所有室温、无退火的高性能 PSC。值得注意的是,获得了具有 19.25% 出色功率转换效率 (PCE) 的 GAI 掺杂器件,远高于原始器件的 16.78%。