当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Intrinsic Defect-Rich Graphene Coupled Cobalt Phthalocyanine for Robust Electrochemical Reduction of Carbon Dioxide
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-05-19 , DOI: 10.1021/acsami.1c04344 Fengxia Liang 1 , Jun Zhang 1 , Zewei Hu 1 , Chao Ma 1 , Wenpeng Ni 1 , Yan Zhang 1 , Shiguo Zhang 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-05-19 , DOI: 10.1021/acsami.1c04344 Fengxia Liang 1 , Jun Zhang 1 , Zewei Hu 1 , Chao Ma 1 , Wenpeng Ni 1 , Yan Zhang 1 , Shiguo Zhang 1
Affiliation
Carbon-based matrix is known to exert a profound influence on the stability and activity of a supported molecular catalyst for electrochemical CO2 reduction reaction (eCO2RR), while regulating the interfacial π–π interaction by designing functional species on the carbon matrix has seldom been explored. Herein, promoted π electron transfer between a graphene substrate and cobalt phthalocyanine (CoPc) is achieved by introducing abundant intrinsic defects into graphene (DrGO), which not only generates more electrochemically active Co sites and leads to a positive shift of the Co2+/Co+ reduction potential but also enhances the CO2 chemical adsorption. Consequently, as compared to the defect-free counterpart rGO-CoPc, DrGO-CoPc could yield CO with a Faradaic efficiency (FECO) higher than 85% in a wide potential range from −0.53 to −0.88 V, and the largest FECO and partial CO current density (JCO) achieve 90.2% and 73.9 mA cm–2, respectively. More importantly, both FECO and JCO can be dramatically improved when conducting eCO2RR in an ionic liquid-based electrolyte, for which FECO is higher than 90.0% in a wide potential range of 600 mV, with the peak JCO of up to 113.6 mA cm–2 in an H-type cell. The excellent eCO2RR performance of DrGO-CoPc rates itself as one of the best immobilized molecular catalysts.
中文翻译:
富含本征缺陷的石墨烯偶联钴酞菁,用于二氧化碳的稳健电化学还原
众所周知,碳基基质对用于电化学 CO 2还原反应 (eCO 2 RR)的负载型分子催化剂的稳定性和活性产生深远的影响,同时通过设计碳基质上的功能物种来调节界面 π-π 相互作用具有很少被探索。在此,石墨烯基底和钴酞菁(CoPc)之间的 π 电子转移是通过将丰富的本征缺陷引入石墨烯(DrGO)来实现的,这不仅会产生更多的电化学活性 Co 位点,而且会导致 Co 2+ / Co +还原潜力但也提高了 CO 2化学吸附。因此,与无缺陷的对应物 rGO-CoPc 相比,DrGO-CoPc 可以在从 -0.53 到 -0.88 V 的广泛电位范围内产生法拉第效率(FE CO)高于 85% 的CO,以及最大的 FE CO和部分 CO 电流密度 ( J CO ) 分别达到 90.2% 和 73.9 mA cm –2。更重要的是,在基于离子液体的电解质中进行 eCO 2 RR时,FE CO和J CO都可以得到显着改善,在600 mV 的宽电位范围内,FE CO高于 90.0%,峰值J CO为高达 113.6 mA cm –2在 H 型电池中。DrGO-CoPc出色的 eCO 2 RR 性能使其成为最好的固定分子催化剂之一。
更新日期:2021-06-02
中文翻译:
富含本征缺陷的石墨烯偶联钴酞菁,用于二氧化碳的稳健电化学还原
众所周知,碳基基质对用于电化学 CO 2还原反应 (eCO 2 RR)的负载型分子催化剂的稳定性和活性产生深远的影响,同时通过设计碳基质上的功能物种来调节界面 π-π 相互作用具有很少被探索。在此,石墨烯基底和钴酞菁(CoPc)之间的 π 电子转移是通过将丰富的本征缺陷引入石墨烯(DrGO)来实现的,这不仅会产生更多的电化学活性 Co 位点,而且会导致 Co 2+ / Co +还原潜力但也提高了 CO 2化学吸附。因此,与无缺陷的对应物 rGO-CoPc 相比,DrGO-CoPc 可以在从 -0.53 到 -0.88 V 的广泛电位范围内产生法拉第效率(FE CO)高于 85% 的CO,以及最大的 FE CO和部分 CO 电流密度 ( J CO ) 分别达到 90.2% 和 73.9 mA cm –2。更重要的是,在基于离子液体的电解质中进行 eCO 2 RR时,FE CO和J CO都可以得到显着改善,在600 mV 的宽电位范围内,FE CO高于 90.0%,峰值J CO为高达 113.6 mA cm –2在 H 型电池中。DrGO-CoPc出色的 eCO 2 RR 性能使其成为最好的固定分子催化剂之一。