当前位置: X-MOL 学术ACS Appl. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Movable Fe2O3 Core in Connected Hierarchical Pores for Ultrafast Intercalation/Deintercalation in Sodium-Ion Batteries
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-05-19 , DOI: 10.1021/acsaem.1c00691
Meiwan Chen 1 , Dechao Niu 1 , Jiayi Mao 1 , Guangyu Jiang 1 , Kaiyuan Li 1 , Gaoxu Huang 1 , Xiaopan Jin 1 , Yongsheng Li 1, 2
Affiliation  

Though great progresses have been made on improving the volume effect and electronic conductivity of anode materials in sodium-ion batteries (SIBs), the electrical performance at high current density for long cycling stability is still a huge challenge. To address this, a facile confined-impregnation/crystallization strategy is developed to construct a movable Fe2O3 core in nitrogen-doped hierarchical porous carbon nanospheres (MFe2O3@N-HCNs) for ultrafast intercalation/deintercalation of SIBs. The as-prepared MFe2O3@N-HCNs not only exhibit a connected and hierarchal porous structure with large surface specific area (∼367 m2 g–1) but also possess a highly dispersed and moveable Fe2O3 core (∼5 nm) for the tolerance of volume expansion during the intercalation/deintercalation process of sodium ions. As SIBs anode materials, the MFe2O3@N-HCNs anode exhibits a capacity of 417 mAh g–1 at 0.1 A g–1 after 100 cycles and of 364 mAh g–1 at 2 A g–1 with 4500 cycles. Especially, a prominent discharge capacity of 102 mAh g–1 is still obtained at 5 A g–1 after 10000 cycles. Such remarkable performances should be attributed to the unique highly dispersed and moveable Fe2O3 core and conductive nitrogen-doped hierarchical porous carbon framework with large surface area. Consequently, this study develops a facile methodology to promote the energy storage and long cycling performance of hierarchically porous carbon@transition-metal oxide (TMO) composite anode materials for SIBs, especially at high current density.

中文翻译:

用于钠离子电池中超快嵌入/脱嵌的连接分层孔中的可移动 Fe 2 O 3

尽管在提高钠离子电池(SIBs)负极材料的体积效应和电子电导率方面取得了很大进展,但在高电流密度下实现长循环稳定性的电性能仍然是一个巨大的挑战。为了解决这个问题,开发了一种简便的受限浸渍/结晶策略,以在氮掺杂的分级多孔碳纳米球 (MFe 2 O 3 @N-HCNs) 中构建可移动的 Fe 2 O 3核,用于 SIB 的超快嵌入/脱嵌。所制备的 MFe 2 O 3 @N-HCNs 不仅表现出具有大比表面积(~367 m 2 g –1) 但还具有高度分散和可移动的 Fe 2 O 3核(~5 nm),用于在钠离子的嵌入/脱嵌过程中耐受体积膨胀​​。作为SIBs负极材料,MFe 2 O 3 @N-HCNs负极在100次循环后在0.1 A g –1下表现出417 mAh g –1的容量,在2 A g –1下表现出364 mAh g –1 4500次循环。特别是,10000 次循环后,在 5 A g –1 下仍可获得102 mAh g –1的显着放电容量。如此出色的性能应归功于独特的高度分散和可移动的 Fe 2 O 3具有大表面积的核心和导电氮掺杂分级多孔碳骨架。因此,本研究开发了一种简便的方法来提高用于 SIBs 的分级多孔碳@过渡金属氧化物 (TMO) 复合负极材料的储能和长循环性能,尤其是在高电流密度下。
更新日期:2021-06-28
down
wechat
bug