当前位置:
X-MOL 学术
›
Quantum Topol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Embedding Deligne's category $\mathrm{\underline{Re}p}(S_t)$ in the Heisenberg category (with an appendix by Christopher Ryba)
Quantum Topology ( IF 1.0 ) Pub Date : 2021-03-17 , DOI: 10.4171/qt/147 Samuel Nybobe Likeng 1 , Alistair Savage 1
Quantum Topology ( IF 1.0 ) Pub Date : 2021-03-17 , DOI: 10.4171/qt/147 Samuel Nybobe Likeng 1 , Alistair Savage 1
Affiliation
We define a faithful linear monoidal functor from the partition category, and hence from Deligne’s category $\mathrm{\underline{Re}p}(S_t)$, to the additive Karoubi envelope of the Heisenberg category. We show that the induced map on Grothendieck rings is injective and corresponds to the Kronecker coproduct on symmetric functions.
中文翻译:
将Deligne的类别$ \ mathrm {\ underline {Re} p}(S_t)$嵌入到Heisenberg类别中(并附带Christopher Ryba的附录)
我们从分区类别(因此从Deligne的类别$ \ mathrm {\ underline {Re} p}(S_t)$)到Heisenberg类别的加性Karoubi包络定义了一个忠实的线性Monoidal函子。我们表明,在Grothendieck环上的诱导图是内射的,并且对应于对称函数上的Kronecker副产物。
更新日期:2021-05-17
中文翻译:
将Deligne的类别$ \ mathrm {\ underline {Re} p}(S_t)$嵌入到Heisenberg类别中(并附带Christopher Ryba的附录)
我们从分区类别(因此从Deligne的类别$ \ mathrm {\ underline {Re} p}(S_t)$)到Heisenberg类别的加性Karoubi包络定义了一个忠实的线性Monoidal函子。我们表明,在Grothendieck环上的诱导图是内射的,并且对应于对称函数上的Kronecker副产物。