当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Phase-Modulation of Iron/Nickel Phosphides Nanocrystals “Armored” with Porous P-Doped Carbon and Anchored on P-Doped Graphene Nanohybrids for Enhanced Overall Water Splitting
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-05-13 , DOI: 10.1002/adfm.202010912 Lei Wang 1 , Jiayao Fan 1, 2 , Ying Liu 1 , Mingyu Chen 1 , Yue Lin 2 , Hengchang Bi 3 , Bingxue Liu 1 , Naien Shi 4 , Dongdong Xu 1 , Jianchun Bao 1 , Min Han 1, 5
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-05-13 , DOI: 10.1002/adfm.202010912 Lei Wang 1 , Jiayao Fan 1, 2 , Ying Liu 1 , Mingyu Chen 1 , Yue Lin 2 , Hengchang Bi 3 , Bingxue Liu 1 , Naien Shi 4 , Dongdong Xu 1 , Jianchun Bao 1 , Min Han 1, 5
Affiliation
Transition metal phosphides (TMPs) nanostructures have emerged as important electroactive materials for energy storage and conversion. Nonetheless, the phase modulation of iron/nickel phosphides nanocrystals or related nanohybrids remains challenging, and their electrocatalytic overall water splitting (OWS) performances are not fully investigated. Here, the phase-controlled synthesis of iron/nickel phosphides nanocrystals “armored” with porous P-doped carbon (PC) and anchored on P-doped graphene (PG) nanohybrids, including FeP–Fe2P@PC/PG, FeP–(NixFe1-x)2P@PC/PG, (NixFe1-x)2P@PC/PG, and Ni2P@PC/PG, are realized by thermal conversion of predesigned supramolecular gels under Ar/H2 atmosphere and tuning Fe/Ni ratio in gel precursors. Thanks to phase-modulation-induced increase of available catalytic active sites and optimization of surface/interface electronic structures, the resultant pure-phase (NixFe1-x)2P@PC/PG exhibits the highest electrocatalytic activity for both hydrogen and oxygen evolution in alkaline media. Remarkably, using it as a bifunctional catalyst, the fabricated (NixFe1-x)2P@PC/PG||(NixFe1-x)2P@PC/PG electrolyzer needs exceptional low cell voltage (1.45 V) to reach 10 mA cm−2 water-splitting current, outperforming its mixed phase and monometallic phosphides counterparts and recently reported bifunctional catalysts based devices, and Pt/C||IrO2 electrolyzer. Also, such (NixFe1-x)2P@PC/PG||(NixFe1-x)2P@PC/PG device manifests outstanding durability for OWS. This work may shed light on optimizing TMPs nanostructures by combining phase-modulation and heteroatoms-doped carbon double-confinement strategies, and accelerate their applications in OWS or other renewable energy options.
中文翻译:
铁/镍磷化物纳米晶体的相调制用多孔 P 掺杂碳“装甲”并锚定在 P 掺杂石墨烯纳米杂化物上以增强整体水分解
过渡金属磷化物 (TMPs) 纳米结构已成为用于能量存储和转换的重要电活性材料。尽管如此,铁/镍磷化物纳米晶体或相关纳米杂化物的相位调制仍然具有挑战性,并且它们的电催化整体水分解(OWS)性能尚未得到充分研究。在这里,铁/镍磷化物纳米晶体的相控合成用多孔掺磷碳(PC)“装甲”并锚定在掺磷石墨烯(PG)纳米杂化物上,包括 FeP–Fe 2 P@PC/PG、FeP– (Ni x Fe 1- x ) 2 P@PC/PG, (Ni x Fe 1- x ) 2 P@PC/PG, 和 Ni 2P@PC/PG 是通过预先设计的超分子凝胶在 Ar/H 2气氛下的热转化和调整凝胶前体中的 Fe/Ni 比来实现的。由于相调制诱导的可用催化活性位点增加和表面/界面电子结构的优化,所得纯相 (Ni x Fe 1- x ) 2 P@PC/PG 对氢和在碱性介质中析氧。值得注意的是,使用它作为双功能催化剂,制造的 (Ni x Fe 1- x ) 2 P@PC/PG || (Ni x Fe 1- x ) 2P@PC/PG 电解槽需要极低的电池电压 (1.45 V) 才能达到 10 mA cm -2 的水分解电流,性能优于其混合相和单金属磷化物对应物以及最近报道的基于双功能催化剂的装置,以及 Pt/C || IrO 2电解槽。此外,这样的 (Ni x Fe 1- x ) 2 P@PC/PG || (Ni x Fe 1- x ) 2P@PC/PG 设备为 OWS 展现了出色的耐用性。这项工作可能会通过结合相位调制和杂原子掺杂的碳双限制策略来优化 TMP 纳米结构,并加速它们在 OWS 或其他可再生能源选择中的应用。
更新日期:2021-07-22
中文翻译:
铁/镍磷化物纳米晶体的相调制用多孔 P 掺杂碳“装甲”并锚定在 P 掺杂石墨烯纳米杂化物上以增强整体水分解
过渡金属磷化物 (TMPs) 纳米结构已成为用于能量存储和转换的重要电活性材料。尽管如此,铁/镍磷化物纳米晶体或相关纳米杂化物的相位调制仍然具有挑战性,并且它们的电催化整体水分解(OWS)性能尚未得到充分研究。在这里,铁/镍磷化物纳米晶体的相控合成用多孔掺磷碳(PC)“装甲”并锚定在掺磷石墨烯(PG)纳米杂化物上,包括 FeP–Fe 2 P@PC/PG、FeP– (Ni x Fe 1- x ) 2 P@PC/PG, (Ni x Fe 1- x ) 2 P@PC/PG, 和 Ni 2P@PC/PG 是通过预先设计的超分子凝胶在 Ar/H 2气氛下的热转化和调整凝胶前体中的 Fe/Ni 比来实现的。由于相调制诱导的可用催化活性位点增加和表面/界面电子结构的优化,所得纯相 (Ni x Fe 1- x ) 2 P@PC/PG 对氢和在碱性介质中析氧。值得注意的是,使用它作为双功能催化剂,制造的 (Ni x Fe 1- x ) 2 P@PC/PG || (Ni x Fe 1- x ) 2P@PC/PG 电解槽需要极低的电池电压 (1.45 V) 才能达到 10 mA cm -2 的水分解电流,性能优于其混合相和单金属磷化物对应物以及最近报道的基于双功能催化剂的装置,以及 Pt/C || IrO 2电解槽。此外,这样的 (Ni x Fe 1- x ) 2 P@PC/PG || (Ni x Fe 1- x ) 2P@PC/PG 设备为 OWS 展现了出色的耐用性。这项工作可能会通过结合相位调制和杂原子掺杂的碳双限制策略来优化 TMP 纳米结构,并加速它们在 OWS 或其他可再生能源选择中的应用。