当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
2D amorphous-MoO3−x@Ti3C2-MXene non-van der Waals heterostructures as anode materials for lithium-ion batteries
Nano Energy ( IF 16.8 ) Pub Date : 2021-05-14 , DOI: 10.1016/j.nanoen.2021.106139
Pengfei Yan , Liang Ji , Xiaopeng Liu , Qinghua Guan , Junling Guo , Yonglong Shen , Haijun Zhang , Weifeng Wei , Xinwei Cui , Qun Xu

2D heterostructures offer a great opportunity in seeking high-performing energy storage materials; however, performance ceiling exists, limited by their van-der-Waals (vdW) interactions. Here, we explore a novel 2D, amorphous MoO3−x (aMoO3−x) on Ti3C2-MXene, non-vdW heterostructure via a facile synthesis route. Density functional theory computations suggest that the non-vdW heterostructure can strongly stabilize aMoO3−x while maintaining electrical conductivity at a high level. Facile 2D Li-ion diffusion can then be achieved in the restacked 2D non-vdW heterostructures due to the weakened interactions between two defective MoO3−x layers, leading to a capacitor-like interlayer diffusion reaching a large capacity of 426 C g−1 on the surface of the amorphous layer and a diffusion-controlled intralayer diffusion of 546 C g−1 within the amorphous layer. These characteristics optimize Li-ion storage kinetics while achieving full capacities of amorphous materials with high stability. This work might offer a feasible platform of 2D non-vdW heterostructures for boosting and understanding Li-ion storage performance.



中文翻译:

2D非晶MoO 3-x @Ti 3 C 2 -MXene非范德华异质结构作为锂离子电池的负极材料

2D异质结构为寻求高性能储能材料提供了巨大的机会。但是,存在性能上限,这受它们的van-der-Waals(vdW)交互作用的限制。在这里,我们通过一种简便的合成途径探索了在Ti 3 C 2 -MXene的非vdW异质结构上的新型2D,非晶MoO 3-x(aMoO 3-x)。密度泛函理论计算表明,非vdW异质结构可以在保持高电导率的同时,使aMoO 3-x稳定。由于两个有缺陷的MoO 3-x之间的相互作用减弱,因此可以在重新堆叠的2D非vdW异质结构中实现便捷的2D锂离子扩散层,导致电容器状层间扩散在非晶层的表面上达到426 C g -1的大容量,并且在非晶层内扩散控制的546 C g -1的层内扩散。这些特性优化了锂离子的存储动力学,同时实现了具有高稳定性的非晶态材料的全部容量。这项工作可能会提供2D非vdW异质结构的可行平台,以提高和了解锂离子存储性能。

更新日期:2021-05-17
down
wechat
bug