当前位置:
X-MOL 学术
›
Energy Fuels
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Recent Advances in Understanding the Formation and Mitigation of Dendrites in Lithium Metal Batteries
Energy & Fuels ( IF 5.2 ) Pub Date : 2021-05-13 , DOI: 10.1021/acs.energyfuels.1c00643 Dhanya Puthusseri 1, 2 , Malik Wahid 1, 3 , Satishchandra Ogale 1, 4
Energy & Fuels ( IF 5.2 ) Pub Date : 2021-05-13 , DOI: 10.1021/acs.energyfuels.1c00643 Dhanya Puthusseri 1, 2 , Malik Wahid 1, 3 , Satishchandra Ogale 1, 4
Affiliation
Lithium (Li) metal battery systems are currently gaining significant attention as the most energy-intensive architectures among the various battery architectures being actively examined at present for multiple emergent applications. Although the cathode chemistries in Li metal systems are fairly simple and far less challenging in liquid electrolytes, the metallic chemistry of the anode poses many challenging problems. The dendrite formation and consequent dead Li formation and short circuiting have rendered the practical realization of these promising battery systems extremely hard. Therefore, the issue of dendrite mitigation has recently triggered hectic research efforts by battery scientists around the globe. The major research thrust of this activity has primarily been on gaining deep insights into the dendrite formation using advanced characterization methods. In this review, we seek to understand the Li dendrite formation as an interplay between the solid electrolyte interphase and surface features. We try to understand the dendrite formation as a consequence of the above two parameters via advanced imaging techniques, like X-ray imaging techniques, X-ray computed tomography, atomic force microscopy, and cryo-electron microscopy. Finally, an outlook is presented suggesting the emergent research directions.
中文翻译:
了解锂金属电池中枝晶形成和缓解的最新进展
锂 (Li) 金属电池系统目前正受到广泛关注,因为它是目前正在积极研究用于多种新兴应用的各种电池架构中能耗最高的架构。尽管锂金属系统中的阴极化学相当简单,而且在液体电解质中的挑战性要小得多,但阳极的金属化学却提出了许多具有挑战性的问题。枝晶形成以及随之而来的死锂形成和短路使得这些有前途的电池系统的实际实现变得极其困难。因此,减少枝晶的问题最近引发了全球电池科学家的繁忙研究工作。这项活动的主要研究重点主要是使用先进的表征方法深入了解枝晶的形成。在这篇综述中,我们试图将锂枝晶的形成理解为固体电解质界面和表面特征之间的相互作用。我们试图通过先进的成像技术,如 X 射线成像技术、X 射线计算机断层扫描、原子力显微镜和冷冻电子显微镜,了解上述两个参数导致的枝晶形成。最后,提出了一个展望,提出了新兴的研究方向。我们试图通过先进的成像技术,如 X 射线成像技术、X 射线计算机断层扫描、原子力显微镜和冷冻电子显微镜,了解上述两个参数导致的枝晶形成。最后,提出了一个展望,提出了新兴的研究方向。我们试图通过先进的成像技术,如 X 射线成像技术、X 射线计算机断层扫描、原子力显微镜和冷冻电子显微镜,了解上述两个参数导致的枝晶形成。最后,提出了一个展望,提出了新兴的研究方向。
更新日期:2021-06-03
中文翻译:
了解锂金属电池中枝晶形成和缓解的最新进展
锂 (Li) 金属电池系统目前正受到广泛关注,因为它是目前正在积极研究用于多种新兴应用的各种电池架构中能耗最高的架构。尽管锂金属系统中的阴极化学相当简单,而且在液体电解质中的挑战性要小得多,但阳极的金属化学却提出了许多具有挑战性的问题。枝晶形成以及随之而来的死锂形成和短路使得这些有前途的电池系统的实际实现变得极其困难。因此,减少枝晶的问题最近引发了全球电池科学家的繁忙研究工作。这项活动的主要研究重点主要是使用先进的表征方法深入了解枝晶的形成。在这篇综述中,我们试图将锂枝晶的形成理解为固体电解质界面和表面特征之间的相互作用。我们试图通过先进的成像技术,如 X 射线成像技术、X 射线计算机断层扫描、原子力显微镜和冷冻电子显微镜,了解上述两个参数导致的枝晶形成。最后,提出了一个展望,提出了新兴的研究方向。我们试图通过先进的成像技术,如 X 射线成像技术、X 射线计算机断层扫描、原子力显微镜和冷冻电子显微镜,了解上述两个参数导致的枝晶形成。最后,提出了一个展望,提出了新兴的研究方向。我们试图通过先进的成像技术,如 X 射线成像技术、X 射线计算机断层扫描、原子力显微镜和冷冻电子显微镜,了解上述两个参数导致的枝晶形成。最后,提出了一个展望,提出了新兴的研究方向。