当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High-Efficiency and Sustainable Desalination Using Thermo-regenerable MOF-808-EDTA: Temperature-Regulated Proton Transfer
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-05-11 , DOI: 10.1021/acsami.1c05204
Chenghan Ji 1 , Hang Yu 1 , Junhe Lu 2 , Yi Ren 1 , Lu Lv 1, 3 , Weiming Zhang 1, 3, 4
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-05-11 , DOI: 10.1021/acsami.1c05204
Chenghan Ji 1 , Hang Yu 1 , Junhe Lu 2 , Yi Ren 1 , Lu Lv 1, 3 , Weiming Zhang 1, 3, 4
Affiliation
![]() |
Adsorption as a desalination approach has the advantages of energy efficiency, low cost, and operational convenience, but its practical application is limited by low desalination capacity, consumption/disposal of strong acids/bases as regeneration reagents, and poor reusability. Herein, we synthesized a thermo-regenerable salt absorbent by grafting ethylenediaminetetraacetic acid (EDTA) onto a metal–organic framework (MOF), MOF-808-EDTA, which could rapidly adsorb NaCl within 30 min from saline water at 25 °C with a desalination capacity as high as 9.4 mmol/g. Moreover, the saturated adsorbent could be facilely regenerated in 80 °C water. Fourier transform infrared spectroscopy and derivative thermogravimetry revealed that temperature-regulated proton transfer between amino and carboxyl groups was the mechanism of thermo-regeneration. EDTA on MOF-808-EDTA appears in a zwitterionic state in water at room temperature, which allowed simultaneous adsorption of Na+ and Cl–. At elevated temperature, it returned to a nonionic state accompanied by the desorption of ions. A similar temperature-dependent adsorption–regeneration process was also observed for other salts, including LiCl, KCl, CaCl2, and MgCl2. Column experiments of brackish groundwater showed that 1 g of MOF-808-EDTA could produce ∼106 mL of fresh water (total dissolved solids < 600 mg/L) without significant capacity loss after 10 successive adsorption–regeneration cycles. This study is the first to propose an EDTA-based MOF for desalination and indicates the potential of MOF-808-EDTA as a green adsorbent for sustainable water desalination.
中文翻译:
使用可热再生的MOF-808-EDTA进行高效,可持续的脱盐:温度调节的质子转移
作为脱盐方法的吸附具有能量效率高,成本低和操作方便的优点,但是其实际应用受到脱盐能力低,作为再生试剂的强酸/碱的消耗/处置以及可重复使用性差的限制。在这里,我们通过将乙二胺四乙酸(EDTA)接枝到金属有机骨架(MOF)MOF-808-EDTA上合成了一种可热再生的盐吸收剂,该吸收剂可以在25°C的盐水中30分钟内迅速吸附NaCl。脱盐能力高达9.4 mmol / g。此外,饱和吸附剂可以在80°C的水中轻松再生。傅立叶变换红外光谱和导数热重分析表明,温度调节的质子在氨基和羧基之间的转移是热再生的机理。+和Cl –。在升高的温度下,它返回到非离子状态,并伴随着离子的解吸。对于其他盐,包括LiCl,KCl,CaCl 2和MgCl 2,也观察到了类似的温度依赖性吸附-再生过程。苦咸水的色谱柱实验表明,经过10个连续的吸附-再生循环,1 g的MOF-808-EDTA可以产生约106 mL的淡水(总溶解固体<600 mg / L),而容量没有明显损失。这项研究是第一个提出基于EDTA的MOF进行脱盐的研究,并表明MOF-808-EDTA作为绿色吸附剂可持续进行水脱盐的潜力。
更新日期:2021-05-26
中文翻译:

使用可热再生的MOF-808-EDTA进行高效,可持续的脱盐:温度调节的质子转移
作为脱盐方法的吸附具有能量效率高,成本低和操作方便的优点,但是其实际应用受到脱盐能力低,作为再生试剂的强酸/碱的消耗/处置以及可重复使用性差的限制。在这里,我们通过将乙二胺四乙酸(EDTA)接枝到金属有机骨架(MOF)MOF-808-EDTA上合成了一种可热再生的盐吸收剂,该吸收剂可以在25°C的盐水中30分钟内迅速吸附NaCl。脱盐能力高达9.4 mmol / g。此外,饱和吸附剂可以在80°C的水中轻松再生。傅立叶变换红外光谱和导数热重分析表明,温度调节的质子在氨基和羧基之间的转移是热再生的机理。+和Cl –。在升高的温度下,它返回到非离子状态,并伴随着离子的解吸。对于其他盐,包括LiCl,KCl,CaCl 2和MgCl 2,也观察到了类似的温度依赖性吸附-再生过程。苦咸水的色谱柱实验表明,经过10个连续的吸附-再生循环,1 g的MOF-808-EDTA可以产生约106 mL的淡水(总溶解固体<600 mg / L),而容量没有明显损失。这项研究是第一个提出基于EDTA的MOF进行脱盐的研究,并表明MOF-808-EDTA作为绿色吸附剂可持续进行水脱盐的潜力。