当前位置: X-MOL 学术IEEE Trans. Cybern. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Model-Free Containment Control of Underactuated Surface Vessels Under Switching Topologies Based on Guiding Vector Fields and Data-Driven Neural Predictors.
IEEE Transactions on Cybernetics ( IF 9.4 ) Pub Date : 2021-04-06 , DOI: 10.1109/tcyb.2021.3061588
Nan Gu , Dan Wang , Zhouhua Peng , Tieshan Li , Shaocheng Tong

This article investigates the model-free containment control of multiple underactuated unmanned surface vessels (USVs) subject to unknown kinetic models. A novel cooperative control architecture is presented for achieving a containment formation under switching topologies. Specifically, a path-guided distributed containment motion generator (CMG) is first proposed for generating reference points according to the underlying switching topologies. Next, guiding-vector-field-based guidance laws are designed such that each USV can track its reference point, enabling smooth transitions during topology switching. Finally, data-driven neural predictors by utilizing real-time and historical data are developed for estimating total uncertainties and unknown input gains, simultaneously. Based on the learned knowledge from neural predictors, adaptive kinetic control laws are designed and no prior information on kinetic model parameters is required. By using the proposed method, the fleet is able to converge to the convex hull spanned by multiple virtual leaders under switching topologies regardless of fully unknown kinetic models. Through stability analyses, it is proven that the closed-loop control system is input-to-state stable and the tracking errors are uniformly ultimately bounded. Simulation results verify the effectiveness of the proposed cooperative control architecture for multiple underactuated USVs with fully unknown kinetic models.

中文翻译:

基于引导矢量场和数据驱动的神经预测器的切换拓扑下欠驱动表面容器的无模型包含控制。

本文研究不受动力学模型约束的多个欠驱动无人水面船只(USV)的无模型安全壳控制。提出了一种新颖的协作控制体系结构,用于在交换拓扑结构下实现安全壳形成。具体而言,首先提出了一种路径引导的分布式遏制运动生成器(CMG),用于根据基础的开关拓扑生成参考点。接下来,设计基于引导矢量场的引导定律,以使每个USV都能跟踪其参考点,从而在拓扑切换期间实现平稳过渡。最后,通过利用实时和历史数据开发了数据驱动的神经预测器,以同时估算总不确定性和未知的输入增益。基于从神经预测器中学到的知识,设计了自适应动力学控制律,不需要动力学模型参数的任何先验信息。通过使用所提出的方法,无论完全未知的动力学模型如何,舰队都能够在切换拓扑下收敛到由多个虚拟领导者跨越的凸包。通过稳定性分析,证明了闭环控制系统是输入到状态稳定的,并且跟踪误差最终均匀地受到限制。仿真结果验证了所提出的协同控制架构对于完全未知动力学模型的多个欠驱动USV的有效性。无论完全未知的动力学模型如何,舰队都能在切换拓扑下收敛到由多个虚拟领导者跨越的凸包。通过稳定性分析,证明了闭环控制系统是输入到状态稳定的,并且跟踪误差最终均匀地受到限制。仿真结果验证了所提出的协同控制架构对于完全未知动力学模型的多个欠驱动USV的有效性。无论完全未知的动力学模型如何,舰队都能在切换拓扑下收敛到由多个虚拟领导者跨越的凸包。通过稳定性分析,证明了闭环控制系统是输入到状态稳定的,并且跟踪误差最终均匀地受到限制。仿真结果验证了所提出的协同控制架构对于完全未知动力学模型的多个欠驱动USV的有效性。
更新日期:2021-04-06
down
wechat
bug