当前位置:
X-MOL 学术
›
Adv. Opt. Photon.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Spatial light interference microscopy: principle and applications to biomedicine
Advances in Optics and Photonics ( IF 25.2 ) Pub Date : 2021-05-05 , DOI: 10.1364/aop.417837 Xi Chen 1 , Mikhail E Kandel 1 , Gabriel Popescu 1
Advances in Optics and Photonics ( IF 25.2 ) Pub Date : 2021-05-05 , DOI: 10.1364/aop.417837 Xi Chen 1 , Mikhail E Kandel 1 , Gabriel Popescu 1
Affiliation
In this paper, we review spatial light interference microscopy (SLIM), a common-path, phase-shifting interferometer, built onto a phase-contrast microscope, with white-light illumination. As one of the most sensitive quantitative phase imaging (QPI) methods, SLIM allows for speckle-free phase reconstruction with sub-nanometer path-length stability. We first review image formation in QPI, scattering, and full-field methods. Then, we outline SLIM imaging from theory and instrumentation to diffraction tomography. Zernike’s phase-contrast microscopy, phase retrieval in SLIM, and halo removal algorithms are discussed. Next, we discuss the requirements for operation, with a focus on software developed in-house for SLIM that enables high-throughput acquisition, whole slide scanning, mosaic tile registration, and imaging with a color camera. We introduce two methods for solving the inverse problem using SLIM, white-light tomography, and Wolf phase tomography. Lastly, we review the applications of SLIM in basic science and clinical studies. SLIM can study cell dynamics, cell growth and proliferation, cell migration, mass transport, etc. In clinical settings, SLIM can assist with cancer studies, reproductive technology, blood testing, etc. Finally, we review an emerging trend, where SLIM imaging in conjunction with artificial intelligence brings computational specificity and, in turn, offers new solutions to outstanding challenges in cell biology and pathology.
中文翻译:
空间光干涉显微镜:原理和在生物医学中的应用
在本文中,我们回顾了空间光干涉显微镜 (SLIM),这是一种共路相移干涉仪,构建在相差显微镜上,具有白光照明。作为最灵敏的定量相位成像 (QPI) 方法之一,SLIM 允许进行具有亚纳米路径长度稳定性的无散斑相位重建。我们首先回顾 QPI、散射和全场方法中的图像形成。然后,我们概述了从理论和仪器到衍射层析成像的 SLIM 成像。讨论了 Zernike 的相衬显微镜、SLIM 中的相位检索和光晕去除算法。接下来,我们讨论操作要求,重点关注内部为 SLIM 开发的软件,该软件可实现高通量采集、整张幻灯片扫描、马赛克瓷砖配准和彩色相机成像。我们介绍了两种使用 SLIM、白光层析成像和 Wolf 相位层析成像解决逆问题的方法。最后,我们回顾了 SLIM 在基础科学和临床研究中的应用。SLIM 可以研究细胞动力学、细胞生长和增殖、细胞迁移、质量运输等。在临床环境中,SLIM 可以协助癌症研究、生殖技术、血液检测等。最后,我们回顾一个新兴趋势,其中 SLIM 成像在与人工智能的结合带来了计算特异性,进而为细胞生物学和病理学中的突出挑战提供了新的解决方案。
更新日期:2021-06-30
中文翻译:
空间光干涉显微镜:原理和在生物医学中的应用
在本文中,我们回顾了空间光干涉显微镜 (SLIM),这是一种共路相移干涉仪,构建在相差显微镜上,具有白光照明。作为最灵敏的定量相位成像 (QPI) 方法之一,SLIM 允许进行具有亚纳米路径长度稳定性的无散斑相位重建。我们首先回顾 QPI、散射和全场方法中的图像形成。然后,我们概述了从理论和仪器到衍射层析成像的 SLIM 成像。讨论了 Zernike 的相衬显微镜、SLIM 中的相位检索和光晕去除算法。接下来,我们讨论操作要求,重点关注内部为 SLIM 开发的软件,该软件可实现高通量采集、整张幻灯片扫描、马赛克瓷砖配准和彩色相机成像。我们介绍了两种使用 SLIM、白光层析成像和 Wolf 相位层析成像解决逆问题的方法。最后,我们回顾了 SLIM 在基础科学和临床研究中的应用。SLIM 可以研究细胞动力学、细胞生长和增殖、细胞迁移、质量运输等。在临床环境中,SLIM 可以协助癌症研究、生殖技术、血液检测等。最后,我们回顾一个新兴趋势,其中 SLIM 成像在与人工智能的结合带来了计算特异性,进而为细胞生物学和病理学中的突出挑战提供了新的解决方案。