当前位置:
X-MOL 学术
›
ACS Appl. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhancing the Electrochemical Performances by Wet Ball Milling to Introduce Structural Water into an Electrolytic MnO2/Graphite Nanocomposite Cathode for Zinc-Ion Batteries
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-05-04 , DOI: 10.1021/acsaem.1c00665 Zining Zhang 1 , Hongjing Shang 1 , Xiaole Zhang 1 , Chang Liu 1 , Song Li 1 , Zhongsheng Wen 1 , Shijun Ji 1 , Juncai Sun 1
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-05-04 , DOI: 10.1021/acsaem.1c00665 Zining Zhang 1 , Hongjing Shang 1 , Xiaole Zhang 1 , Chang Liu 1 , Song Li 1 , Zhongsheng Wen 1 , Shijun Ji 1 , Juncai Sun 1
Affiliation
The introduction of structural water in cathode materials of zinc-ion batteries can reduce electrostatic interactions to promote zinc-ion diffusion. However, it is difficult to introduce structural water in MnO2 cathodes due to annealing for crystallinity. For the first time, we introduce structural water into MnO2/graphite nanocomposites by simple wet ball milling of a mixture of electrolytic MnO2 and natural graphite. The composites of nanorod MnO2/graphite exhibit a high discharge capacity (312 mA h g–1 at 0.1 A g–1), which is more than twice that of electrolytic MnO2 (130 mA h g–1 at 0.1 A g–1). It also shows an outstanding rate capacity and cyclic stability that retains 80.1% of the incipient capacity after 1000 cycles at 1 A g–1. MnO2/graphite composites with certain structural water and oxygen vacancies exhibit excellent electrochemical properties, mainly because the presence of structural water and oxygen vacancies can promote Zn2+ ion diffusion of the materials. Through the results of density functional theory calculations and experiments, we verify the adsorption between structural water and crystal planes and identify the positions of structural water, mainly on the (102) and (110) planes of ε-MnO2, which make an impact on ion diffusion. This feasible wet ball milling can not only obtain the composite electrode materials with excellent electrochemical performances but also provide an approach for future synthesis of composite materials with structural water and oxygen vacancies.
中文翻译:
通过湿式球磨增强电化学性能以将结构水引入用于锌离子电池的电解MnO 2 /石墨纳米复合阴极
在锌离子电池正极材料中引入结构水可以减少静电相互作用,从而促进锌离子扩散。然而,由于结晶性的退火,难以在MnO 2阴极中引入结构水。第一次,我们通过简单的湿式球磨电解MnO 2和天然石墨的混合物,将结构水引入MnO 2 /石墨纳米复合材料。纳米棒的MnO的复合材料2 /石墨表现出高的放电容量(312毫安汞柱-1 0.1 A G -1),这是更重要的是电解的MnO两次2(130毫安汞柱-1在0.1 A克-1)。它还显示了出色的速率容量和循环稳定性,在1 A g –1下经过1000次循环后仍保留了初始容量的80.1%。具有一定结构水和氧空位的MnO 2 /石墨复合材料表现出优异的电化学性能,主要是因为结构水和氧空位的存在可以促进材料的Zn 2+离子扩散。通过密度泛函理论计算和实验的结果,我们验证结构水和晶面之间的吸附和识别的结构水的位置,主要是对的(102)和(110)平面ε-的MnO 2,这会影响离子扩散。这种可行的湿式球磨不仅可以得到具有优异电化学性能的复合电极材料,而且还为将来合成具有结构水和氧空位的复合材料提供了一种方法。
更新日期:2021-05-24
中文翻译:
通过湿式球磨增强电化学性能以将结构水引入用于锌离子电池的电解MnO 2 /石墨纳米复合阴极
在锌离子电池正极材料中引入结构水可以减少静电相互作用,从而促进锌离子扩散。然而,由于结晶性的退火,难以在MnO 2阴极中引入结构水。第一次,我们通过简单的湿式球磨电解MnO 2和天然石墨的混合物,将结构水引入MnO 2 /石墨纳米复合材料。纳米棒的MnO的复合材料2 /石墨表现出高的放电容量(312毫安汞柱-1 0.1 A G -1),这是更重要的是电解的MnO两次2(130毫安汞柱-1在0.1 A克-1)。它还显示了出色的速率容量和循环稳定性,在1 A g –1下经过1000次循环后仍保留了初始容量的80.1%。具有一定结构水和氧空位的MnO 2 /石墨复合材料表现出优异的电化学性能,主要是因为结构水和氧空位的存在可以促进材料的Zn 2+离子扩散。通过密度泛函理论计算和实验的结果,我们验证结构水和晶面之间的吸附和识别的结构水的位置,主要是对的(102)和(110)平面ε-的MnO 2,这会影响离子扩散。这种可行的湿式球磨不仅可以得到具有优异电化学性能的复合电极材料,而且还为将来合成具有结构水和氧空位的复合材料提供了一种方法。