当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Facile Design of Sulfide-Based all Solid-State Lithium Metal Battery: In Situ Polymerization within Self-Supported Porous Argyrodite Skeleton
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-04-29 , DOI: 10.1002/adfm.202101523 Yantao Wang 1, 2 , Jiangwei Ju 1 , Shanmu Dong 1 , Yiyuan Yan 1 , Feng Jiang 1 , Longfei Cui 1 , Qinglei Wang 1 , Xiaoqi Han 1 , Guanglei Cui 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-04-29 , DOI: 10.1002/adfm.202101523 Yantao Wang 1, 2 , Jiangwei Ju 1 , Shanmu Dong 1 , Yiyuan Yan 1 , Feng Jiang 1 , Longfei Cui 1 , Qinglei Wang 1 , Xiaoqi Han 1 , Guanglei Cui 1
Affiliation
All solid-state batteries holds great promise for superiorly safe and high energy electrochemical energy storage. The ionic conductivity of electrolytes and its interfacial compatibility with the electrode are two critical factors in determining the electrochemical performance of all solid-state batteries. It is a great challenge to simultaneously demonstrate fantastic ionic conductivity and compatible electrolyte/electrode interface to acquire a well-performed all solid-state battery. By in situ polymerizing poly(ethylene glycol) methyl ether acrylate within a self-supported 3D porous Li-argyrodite (Li6PS5Cl) skeleton, the two bottlenecks are tackled successfully at once. As a result, all solid-state lithium metal batteries with a 4.5 V LiNi0.8Mn0.1Co0.1O2 cathode designed by this integrated strategy demonstrates a high Coulombic efficiency exceeding 99% at room temperature. Solid-state nuclear magnetic resonance data suggest that Li+ mainly migrates along the continuous Li6PS5Cl phase to result in a room temperature conductivity of 4.6 × 10−4 S cm−1, which is 128 times higher than that of the corresponding polymer. Meanwhile, the inferior solid–solid electrolyte/electrode interface is integrated via in situ polymerization to lessen the interfacial resistance significantly. This study thereby provides a very promising strategy of solid electrolyte design to simultaneously meet both high ionic conductivity and good interfacial compatibility towards practical high-energy-density all solid-state lithium batteries.
中文翻译:
硫化物基全固态锂金属电池的简易设计:自支撑多孔银锭骨架内的原位聚合
全固态电池在极其安全和高能量的电化学储能方面具有广阔的前景。电解质的离子电导率及其与电极的界面相容性是决定所有固态电池电化学性能的两个关键因素。同时展示出色的离子电导率和兼容的电解质/电极界面以获取性能良好的全固态电池是一项巨大的挑战。通过在自支撑的 3D 多孔锂银矿 (Li 6 PS 5 Cl) 骨架内原位聚合聚(乙二醇)甲基醚丙烯酸酯,这两个瓶颈同时被成功解决。因此,具有 4.5 V LiNi 0.8 Mn 的所有固态锂金属电池通过这种集成策略设计的0.1 Co 0.1 O 2阴极在室温下表现出超过 99% 的高库仑效率。固态核磁共振数据表明,Li +主要沿连续的 Li 6 PS 5 Cl 相迁移,导致室温电导率为 4.6 × 10 -4 S cm -1,比相应的聚合物高 128 倍。同时,劣质的固体-固体电解质/电极界面通过原位聚合进行整合,显着降低了界面电阻。因此,该研究提供了一种非常有前景的固体电解质设计策略,以同时满足高离子电导率和良好的界面兼容性,从而实现实用的高能量密度全固态锂电池。
更新日期:2021-04-29
中文翻译:
硫化物基全固态锂金属电池的简易设计:自支撑多孔银锭骨架内的原位聚合
全固态电池在极其安全和高能量的电化学储能方面具有广阔的前景。电解质的离子电导率及其与电极的界面相容性是决定所有固态电池电化学性能的两个关键因素。同时展示出色的离子电导率和兼容的电解质/电极界面以获取性能良好的全固态电池是一项巨大的挑战。通过在自支撑的 3D 多孔锂银矿 (Li 6 PS 5 Cl) 骨架内原位聚合聚(乙二醇)甲基醚丙烯酸酯,这两个瓶颈同时被成功解决。因此,具有 4.5 V LiNi 0.8 Mn 的所有固态锂金属电池通过这种集成策略设计的0.1 Co 0.1 O 2阴极在室温下表现出超过 99% 的高库仑效率。固态核磁共振数据表明,Li +主要沿连续的 Li 6 PS 5 Cl 相迁移,导致室温电导率为 4.6 × 10 -4 S cm -1,比相应的聚合物高 128 倍。同时,劣质的固体-固体电解质/电极界面通过原位聚合进行整合,显着降低了界面电阻。因此,该研究提供了一种非常有前景的固体电解质设计策略,以同时满足高离子电导率和良好的界面兼容性,从而实现实用的高能量密度全固态锂电池。