当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Innovation of Materials, Devices, and Functionalized Interfaces in Organic Spintronics
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-04-15 , DOI: 10.1002/adfm.202100550 Dong Li 1, 2 , Gui Yu 1, 2
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-04-15 , DOI: 10.1002/adfm.202100550 Dong Li 1, 2 , Gui Yu 1, 2
Affiliation
Organic spintronics has been attracting the interest of the scientific community because of its potential to complement the electronics industry by combining the spin and charge degrees of freedom. Synthesized organic materials with light elements have been widely applied in organic spintronics due to their intrinsic weak spin-orbit coupling and hyperfine interaction. Meanwhile, the prototypic devices in inorganic spintronics have been creatively utilized to fabricate analogous organic devices. The interfaces between organic materials and ferromagnetic electrodes in spintronic devices are diverse and can lead to many novel phenomena that influence the device performance. In this review, the novel organic materials, innovative devices, and functionalized interfaces in organic spintronics are comprehensively introduced. First, the fundamental concepts and parameters of organic spin devices are clarified. Subsequently, the organic materials applied in organic spintronics are classified, which include small molecules, polymers, and organic–inorganic hybrid perovskites. Moreover, several types of spin-related devices in this field are introduced and discussed. Thereafter, the functionalized interfaces of the spin-related devices are categorized and elaborated upon. Finally, a brief summary and future prospects are presented, which highlight the developments necessary in organic spintronics in the near future.
中文翻译:
有机自旋电子学中材料、器件和功能化界面的创新
有机自旋电子学一直吸引着科学界的兴趣,因为它有可能通过结合自旋和电荷自由度来补充电子工业。具有轻元素的合成有机材料由于其固有的弱自旋轨道耦合和超精细相互作用而被广泛应用于有机自旋电子学。同时,无机自旋电子学中的原型器件已被创造性地用于制造类似的有机器件。自旋电子器件中有机材料和铁磁电极之间的界面多种多样,可能会导致许多影响器件性能的新现象。在这篇综述中,全面介绍了有机自旋电子学中的新型有机材料、创新器件和功能化界面。第一的,阐明了有机自旋器件的基本概念和参数。随后,对应用于有机自旋电子学的有机材料进行了分类,包括小分子、聚合物和有机-无机杂化钙钛矿。此外,介绍和讨论了该领域的几种类型的自旋相关器件。此后,对自旋相关器件的功能化接口进行了分类和阐述。最后,提出了一个简短的总结和未来的前景,强调了在不久的将来有机自旋电子学的必要发展。介绍和讨论了该领域的几种自旋相关器件。此后,对自旋相关器件的功能化接口进行了分类和阐述。最后,提出了一个简短的总结和未来的前景,强调了在不久的将来有机自旋电子学的必要发展。介绍和讨论了该领域的几种自旋相关器件。此后,对自旋相关器件的功能化接口进行了分类和阐述。最后,提出了一个简短的总结和未来的前景,强调了在不久的将来有机自旋电子学的必要发展。
更新日期:2021-04-15
中文翻译:
有机自旋电子学中材料、器件和功能化界面的创新
有机自旋电子学一直吸引着科学界的兴趣,因为它有可能通过结合自旋和电荷自由度来补充电子工业。具有轻元素的合成有机材料由于其固有的弱自旋轨道耦合和超精细相互作用而被广泛应用于有机自旋电子学。同时,无机自旋电子学中的原型器件已被创造性地用于制造类似的有机器件。自旋电子器件中有机材料和铁磁电极之间的界面多种多样,可能会导致许多影响器件性能的新现象。在这篇综述中,全面介绍了有机自旋电子学中的新型有机材料、创新器件和功能化界面。第一的,阐明了有机自旋器件的基本概念和参数。随后,对应用于有机自旋电子学的有机材料进行了分类,包括小分子、聚合物和有机-无机杂化钙钛矿。此外,介绍和讨论了该领域的几种类型的自旋相关器件。此后,对自旋相关器件的功能化接口进行了分类和阐述。最后,提出了一个简短的总结和未来的前景,强调了在不久的将来有机自旋电子学的必要发展。介绍和讨论了该领域的几种自旋相关器件。此后,对自旋相关器件的功能化接口进行了分类和阐述。最后,提出了一个简短的总结和未来的前景,强调了在不久的将来有机自旋电子学的必要发展。介绍和讨论了该领域的几种自旋相关器件。此后,对自旋相关器件的功能化接口进行了分类和阐述。最后,提出了一个简短的总结和未来的前景,强调了在不久的将来有机自旋电子学的必要发展。