Applied Surface Science ( IF 6.3 ) Pub Date : 2021-05-02 , DOI: 10.1016/j.apsusc.2021.149908
Cuijuan Zhang , Yanping He , Youqiang Wang , Yazhou Liang , Arslan Majeed , Zuolei Yang , Shanshan Yao , Xiangqian Shen , Tianbao Li , Shibiao Qin
![]() |
Lithium sulfur (Li-S) batteries have been paid more attention to meet the demand of high capacity energy storage. However, most substrates applied to electrodes, which have both high conductivity and full coverage of adsorption-catalysis synergies, are difficult to achieve. Herein, the combination of electrospinning and hydrothermal method is developed to fabricate the composite membrane of ferri-based spinel CoFe2O4 (CFO) loaded nitrogen doped carbon nanofibers (CFONC) applied to positive current collector with Li2S6 catholyte and binder-free of Li-S batteries. Benefiting from the improved catalytic performances in redox reaction of lithium polysulfides due to the abundant active sites which originate from CFO, the CFONC composite with S loading of 4.74 mg exhibits an initial specific discharge capacity of 1096 mAh g-1 at 0.2 C and a high specific discharge capacity of 681 mAh g-1 after 500 cycles with a capacity decay as small as 0.076 % per cycle. Even with S loading of 7.11 mg, the cell of CFONC delivers a high initial capacity of 6.1 mAh and maintains 4.8 mAh after 300 cycles. The results show that the efficient chemical anchoring polysulfides and catalyzing redox reaction by multifunctional CFONC composites is a feasible strategy for the large-scale application of lithium sulfur batteries with high performance in the future.
中文翻译:

负载N掺杂碳纳米纤维网络的CoFe 2 O 4纳米颗粒作为增强Li-S电池氧化还原动力学的电催化剂
满足高容量储能需求的锂硫(Li-S)电池已得到更多关注。然而,很难同时获得具有高电导率和完全覆盖的吸附-催化协同作用的大多数应用于电极的基材。在本文中,开发了静电纺丝和水热法相结合的方法,以制备含Li 2 S 6的铁基尖晶石CoFe 2 O 4(CFO)负载氮掺杂碳纳米纤维(CFONC)的复合膜。Li-S电池的阴极电解液和无粘结剂。得益于CFO丰富的活性位,多硫化锂在氧化还原反应中的催化性能得到了改善,S负载量为4.74 mg的CFONC复合材料在0.2 C时表现出1096 mAh g -1的初始比放电容量,并具有较高的比放电容量为681 mAh g -1500次循环后,每循环的容量衰减小至0.076%。即使在S负载为7.11 mg的情况下,CFONC电池仍可提供6.1 mAh的高初始容量,并在300次循环后仍保持4.8 mAh。结果表明,多功能CFONC复合材料有效地化学锚固多硫化物和催化氧化还原反应是未来高性能锂硫电池大规模应用的可行策略。