当前位置:
X-MOL 学术
›
J. Mater. Chem. A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A biomass-derived, all-day-round solar evaporation platform for harvesting clean water from microplastic pollution
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2021-4-15 , DOI: 10.1039/d1ta02004h Xiangyu Meng 1, 2, 3, 4 , Xiaoli Peng 1, 2, 3, 4 , Jing Xue 1, 2, 3, 4 , Yen Wei 4, 5, 6, 7 , Yueming Sun 1, 2, 3, 4 , Yunqian Dai 1, 2, 3, 4
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2021-4-15 , DOI: 10.1039/d1ta02004h Xiangyu Meng 1, 2, 3, 4 , Xiaoli Peng 1, 2, 3, 4 , Jing Xue 1, 2, 3, 4 , Yen Wei 4, 5, 6, 7 , Yueming Sun 1, 2, 3, 4 , Yunqian Dai 1, 2, 3, 4
Affiliation
Solar-driven evaporation is highly promising for sustainable freshwater production without high energy-consumption. Till now, it has still been challenging to achieve both high performance and cost-effectiveness within one evaporator. In addition, the rarely reported strategy overcomes the obstacles of emerging microplastic-pollution in water sources and poor all-day-round evaporation. Herein, a low-cost, high-efficiency, biomass-derived three-dimensional (3D) graphene/cotton sponge with gradient vertical microchannels was readily constructed by simply stretching cotton. It served as a versatile photothermal platform with a high evaporation rate (2.49 kg m−2 h−1, normalized to both the top and side surfaces) and could withstand a large external stress of up to 8750-times its weight. Moreover, in the first attempt to efficiently evaporate water (90.6%) from a microplastic-polluted source, nearly 100% of the polyethylene (PE) microfibers were removed from evaporated water by 3D MoS2/graphene/cotton via reactive oxygen species attack and multi-level interception. New in situ FTIR microscopy technology was employed to accurately monitor the degradation mechanism of the PE microplastics. The PE degradation efficiency was as high as 19% in oxygen-enriched water, predominantly contributed by reactive O2˙−, and could be easily enhanced to 32% with the aid of additional reactive species (e.g., ˙HOO and H2O2) in 1 h. Besides, under the guidance of finite element analysis (FEA), a phase-change polyethylene glycol (PEG) layer was functionalized outside the graphene/cotton. Notably, it possessed a remarkably high all-day-round evaporation rate (1.63 kg per m2 per h per day, 1.42-times that achieved by a traditional evaporator without phase-change function) by utilizing thermal energy in the dark. This work gives promising alternative strategies for low-cost clean-water harvesting from microplastic-pollution and sustainable evaporation even under dark conditions.
中文翻译:
来自生物质的全天候太阳能蒸发平台,可从微塑料污染中收集干净的水
太阳能驱动的蒸发对于可持续的淡水生产而不具有高能耗是非常有前途的。到目前为止,在一台蒸发器中既要实现高性能又要具有成本效益仍然是一个挑战。此外,鲜有报道的策略克服了水源中出现的微塑性污染和全天蒸发不佳的障碍。在此,通过简单地拉伸棉花就可以容易地构建低成本,高效,生物质衍生的具有梯度垂直微通道的三维(3D)石墨烯/棉海绵。它用作具有高蒸发速率(2.49 kg m -2 h -1的多功能光热平台),并标准化为顶部和侧面),并且可以承受高达其重量8750倍的较大外部应力。此外,在首次尝试从微塑料污染源中有效蒸发水(90.6%)的过程中,通过3D MoS 2 /石墨烯/棉通过活性氧攻击并从蒸发水中去除了近100%的聚乙烯(PE)微纤维。多层次拦截。采用新的原位FTIR显微镜技术来准确监测PE微塑料的降解机理。的PE降解效率高达19%氧气的富氧水,主要贡献的反应性ö 2 ˙ -,并可以在1小时内借助其他反应性物质(例如˙HOO和H 2 O 2)轻松提高至32%。此外,在有限元分析(FEA)的指导下,相变聚乙二醇(PEG)层在石墨烯/棉的外部进行了功能化。值得注意的是,通过在黑暗中利用热能,它具有非常高的全天蒸发速率(每天每m 2每小时1.63 kg ,是没有相变功能的传统蒸发器的1.42倍)。这项工作提供了有前景的替代策略,即使在黑暗条件下,也可以从微塑性污染和可持续蒸发中低成本收集干净的水。
更新日期:2021-04-27
中文翻译:
来自生物质的全天候太阳能蒸发平台,可从微塑料污染中收集干净的水
太阳能驱动的蒸发对于可持续的淡水生产而不具有高能耗是非常有前途的。到目前为止,在一台蒸发器中既要实现高性能又要具有成本效益仍然是一个挑战。此外,鲜有报道的策略克服了水源中出现的微塑性污染和全天蒸发不佳的障碍。在此,通过简单地拉伸棉花就可以容易地构建低成本,高效,生物质衍生的具有梯度垂直微通道的三维(3D)石墨烯/棉海绵。它用作具有高蒸发速率(2.49 kg m -2 h -1的多功能光热平台),并标准化为顶部和侧面),并且可以承受高达其重量8750倍的较大外部应力。此外,在首次尝试从微塑料污染源中有效蒸发水(90.6%)的过程中,通过3D MoS 2 /石墨烯/棉通过活性氧攻击并从蒸发水中去除了近100%的聚乙烯(PE)微纤维。多层次拦截。采用新的原位FTIR显微镜技术来准确监测PE微塑料的降解机理。的PE降解效率高达19%氧气的富氧水,主要贡献的反应性ö 2 ˙ -,并可以在1小时内借助其他反应性物质(例如˙HOO和H 2 O 2)轻松提高至32%。此外,在有限元分析(FEA)的指导下,相变聚乙二醇(PEG)层在石墨烯/棉的外部进行了功能化。值得注意的是,通过在黑暗中利用热能,它具有非常高的全天蒸发速率(每天每m 2每小时1.63 kg ,是没有相变功能的传统蒸发器的1.42倍)。这项工作提供了有前景的替代策略,即使在黑暗条件下,也可以从微塑性污染和可持续蒸发中低成本收集干净的水。