当前位置: X-MOL 学术J. Phys. Chem. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient DFT Solver for Nanoscale Simulations and Beyond
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2021-04-22 , DOI: 10.1021/acs.jpclett.1c00716
Xuecheng Shao , Wenhui Mi , Michele Pavanello

We present the one-orbital ensemble self-consistent field (OE-SCF), an alternative orbital-free DFT solver that extends the applicability of DFT to beyond nanoscale system sizes, retaining the accuracy required to be predictive. OE-SCF treats the Pauli potential as an external potential updating it iteratively, dramatically outperforming current solvers because only few iterations are needed to reach convergence. OE-SCF enabled us to carry out the largest ab initio simulations for silicon-based materials to date by employing only 1 CPU. We computed the energy of bulk-cut Si nanoparticles as a function of their diameter up to 16 nm, and the polarization and interface charge transfer when a Si slab is sandwiched between two metal slabs where lattice matching mandated a large contact area. Additionally, OE-SCF opens the door to adopting even more accurate functionals in orbital-free DFT simulations while still tackling large system sizes.

中文翻译:

高效的DFT求解器,可用于纳米级仿真及其他领域

我们提出了一个单轨道整体自洽场(OE-SCF),这是一种替代性的无轨道DFT求解器,它将DFT的适用性扩展到了超过纳米级的系统尺寸,并保留了可预测的精度。OE-SCF将Pauli势作为迭代更新的外部势,将其性能大大优于当前的求解器,因为只需很少的迭代即可达到收敛。OE-SCF使我们能够进行最大的从头算迄今为止,仅使用1个CPU即可对硅基材料进行仿真。我们计算了整体切割的Si纳米颗粒的能量随其直径(最大可达16 nm)的变化,以及将Si平板夹在两个金属平板之间的情况下的极化和界面电荷转移,其中晶格匹配要求较大的接触面积。此外,OE-SCF为在无轨道DFT模拟中采用甚至更精确的功能打开了大门,同时仍然可以解决大型系统的问题。
更新日期:2021-05-06
down
wechat
bug