当前位置: X-MOL 学术Steel Res. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
炼铁高炉铁水温度、硅浓度和冷量预测解释模型
Steel Research International ( IF 1.9 ) Pub Date : 2021-04-22 , DOI: 10.1002/srin.202100078
Edwin Lughofer 1 , Robert Pollak 1 , Christoph Feilmayr 2 , Magdalena Schatzl 3 , Susanne Saminger-Platz 1
Affiliation  

在此,论证了对炼铁高炉过程中三个基本过程变量(即铁水温度、硅浓度和冷却能力)的数据驱动预测和解释模型的建立。除了具有足够预测范围的模型的可靠预测质量之外,另一个主要目标是建立可解释和具有启发性的模型。为了支持(语言)可解释性,主要关注点是从位于合作伙伴公司现场的特定高炉工艺收集的大型数据库中提取基于规则的模型。由于数据中的预期不确定性,例如由于测量噪声,模糊系统是实现基于规则形式的稳健模型的适当架构选择。对于预测模糊系统的全自动训练,一方面执行了新的特征排序方法,另一方面执行了特殊的粒度规则提取程序。在连续几年的两个独立测试数据集上测试获得的模型显示出稳定的预测性能,没有任何误差漂移,并且比其他相关机器学习方法(包括深度神经网络等)具有更高的性能。此外,最终的模型结果证明最多有 4-5 个输入和几个规则,并允许获得对过程的新见解。在连续几年的两个独立测试数据集上测试获得的模型显示出稳定的预测性能,没有任何误差漂移,并且比其他相关机器学习方法(包括深度神经网络等)具有更高的性能。此外,最终的模型结果证明最多有 4-5 个输入和几个规则,并允许获得对过程的新见解。在连续几年的两个独立测试数据集上测试获得的模型显示出稳定的预测性能,没有任何误差漂移,并且比其他相关机器学习方法(包括深度神经网络等)具有更高的性能。此外,最终的模型结果证明最多有 4-5 个输入和几个规则,并允许获得对过程的新见解。



"点击查看英文标题和摘要"

更新日期:2021-04-22
down
wechat
bug