当前位置:
X-MOL 学术
›
Int. J. Mol. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene, a Major Active Metabolite of Bisphenol A, Triggers Pancreatic β-Cell Death via a JNK/AMPKα Activation-Regulated Endoplasmic Reticulum Stress-Mediated Apoptotic Pathway
International Journal of Molecular Sciences ( IF 4.9 ) Pub Date : 2021-04-22 , DOI: 10.3390/ijms22094379 Cheng-Chin Huang , Ching-Yao Yang , Chin-Chuan Su , Kai-Min Fang , Cheng-Chieh Yen , Ching-Ting Lin , Jui-Min Liu , Kuan-I Lee , Ya-Wen Chen , Shing-Hwa Liu , Chun-Fa Huang
International Journal of Molecular Sciences ( IF 4.9 ) Pub Date : 2021-04-22 , DOI: 10.3390/ijms22094379 Cheng-Chin Huang , Ching-Yao Yang , Chin-Chuan Su , Kai-Min Fang , Cheng-Chieh Yen , Ching-Ting Lin , Jui-Min Liu , Kuan-I Lee , Ya-Wen Chen , Shing-Hwa Liu , Chun-Fa Huang
4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), a major active metabolite of bisphenol A (BPA), is generated in the mammalian liver. Some studies have suggested that MBP exerts greater toxicity than BPA. However, the mechanism underlying MBP-induced pancreatic β-cell cytotoxicity remains largely unclear. This study demonstrated the cytotoxicity of MBP in pancreatic β-cells and elucidated the cellular mechanism involved in MBP-induced β-cell death. Our results showed that MBP exposure significantly reduced cell viability, caused insulin secretion dysfunction, and induced apoptotic events including increased caspase-3 activity and the expression of active forms of caspase-3/-7/-9 and PARP protein. In addition, MBP triggered endoplasmic reticulum (ER) stress, as indicated by the upregulation of GRP 78, CHOP, and cleaved caspase-12 proteins. Pretreatment with 4-phenylbutyric acid (4-PBA; a pharmacological inhibitor of ER stress) markedly reversed MBP-induced ER stress and apoptosis-related signals. Furthermore, exposure to MBP significantly induced the protein phosphorylation of JNK and AMP-activated protein kinase (AMPK)α. Pretreatment of β-cells with pharmacological inhibitors for JNK (SP600125) and AMPK (compound C), respectively, effectively abrogated the MBP-induced apoptosis-related signals. Both JNK and AMPK inhibitors also suppressed the MBP-induced activation of JNK and AMPKα and of each other. In conclusion, these findings suggest that MBP exposure exerts cytotoxicity on β-cells via the interdependent activation of JNK and AMPKα, which regulates the downstream apoptotic signaling pathway.
中文翻译:
双酚A的主要活性代谢物4-甲基-2,4-双(4-羟基苯基)戊-1-烯通过JNK /AMPKα活化调节的内质网应激介导的凋亡途径触发胰腺β细胞死亡。
4-甲基-2,4-双(4-羟苯基)戊-1-烯(MBP)是双酚A(BPA)的主要活性代谢产物,在哺乳动物的肝脏中产生。一些研究表明,MBP比BPA具有更大的毒性。然而,MBP诱导的胰腺β细胞细胞毒性的潜在机制仍不清楚。这项研究证明了MBP在胰腺β细胞中的细胞毒性,并阐明了MBP诱导的β细胞死亡所涉及的细胞机制。我们的结果表明,MBP暴露显着降低细胞活力,引起胰岛素分泌功能障碍,并诱导凋亡事件,包括增加caspase-3活性以及caspase-3 / -7 / -9和PARP蛋白的活性形式的表达。此外,MBP触发内质网(ER)应激,如GRP 78,CHOP和裂解的caspase-12蛋白上调所表明的。用4-苯基丁酸(4-PBA; ER应激的药理抑制剂)进行预处理可显着逆转MBP诱导的ER应激和凋亡相关信号。此外,暴露于MBP会显着诱导JNK和AMP激活的蛋白激酶(AMPK)α的蛋白磷酸化。分别用JNK(SP600125)和AMPK(化合物C)的药理抑制剂预处理β细胞,可有效消除MBP诱导的凋亡相关信号。JNK和AMPK抑制剂也都抑制了MBP诱导的JNK和AMPKα以及彼此之间的激活。总之,这些发现表明,MBP暴露通过JNK和AMPKα的相互依赖激活而对β细胞产生细胞毒性,从而调节下游的凋亡信号通路。(ER应激的药理抑制剂)明显逆转了MBP诱导的ER应激和凋亡相关信号。此外,暴露于MBP会显着诱导JNK和AMP激活的蛋白激酶(AMPK)α的蛋白磷酸化。分别用JNK(SP600125)和AMPK(化合物C)的药理抑制剂预处理β细胞,可有效消除MBP诱导的凋亡相关信号。JNK和AMPK抑制剂也都抑制了MBP诱导的JNK和AMPKα以及彼此之间的激活。总之,这些发现表明,MBP暴露通过JNK和AMPKα的相互依赖激活而对β细胞产生细胞毒性,从而调节下游的凋亡信号通路。(ER应激的药理抑制剂)明显逆转了MBP诱导的ER应激和凋亡相关信号。此外,暴露于MBP会显着诱导JNK和AMP激活的蛋白激酶(AMPK)α的蛋白磷酸化。分别用JNK(SP600125)和AMPK(化合物C)的药理抑制剂预处理β细胞,可有效消除MBP诱导的凋亡相关信号。JNK和AMPK抑制剂也都抑制了MBP诱导的JNK和AMPKα以及彼此之间的激活。总之,这些发现表明,MBP暴露通过JNK和AMPKα的相互依赖激活而对β细胞产生细胞毒性,从而调节下游的凋亡信号通路。暴露于MBP会显着诱导JNK和AMP激活的蛋白激酶(AMPK)α的蛋白磷酸化。分别用JNK(SP600125)和AMPK(化合物C)的药理抑制剂预处理β细胞,可有效消除MBP诱导的凋亡相关信号。JNK和AMPK抑制剂也都抑制了MBP诱导的JNK和AMPKα以及彼此之间的激活。总之,这些发现表明,MBP暴露通过JNK和AMPKα的相互依赖激活而对β细胞产生细胞毒性,从而调节下游的凋亡信号通路。暴露于MBP会显着诱导JNK和AMP激活的蛋白激酶(AMPK)α的蛋白磷酸化。分别用JNK(SP600125)和AMPK(化合物C)的药理抑制剂预处理β细胞,可有效消除MBP诱导的凋亡相关信号。JNK和AMPK抑制剂也都抑制了MBP诱导的JNK和AMPKα以及彼此之间的激活。总之,这些发现表明,MBP暴露通过JNK和AMPKα的相互依赖激活而对β细胞产生细胞毒性,从而调节下游的凋亡信号通路。JNK和AMPK抑制剂也都抑制了MBP诱导的JNK和AMPKα以及彼此之间的激活。总之,这些发现表明,MBP暴露通过JNK和AMPKα的相互依赖激活而对β细胞产生细胞毒性,从而调节下游的凋亡信号通路。JNK和AMPK抑制剂也都抑制了MBP诱导的JNK和AMPKα以及彼此之间的激活。总之,这些发现表明,MBP暴露通过JNK和AMPKα的相互依赖激活而对β细胞产生细胞毒性,从而调节下游的凋亡信号通路。
更新日期:2021-04-22
中文翻译:
双酚A的主要活性代谢物4-甲基-2,4-双(4-羟基苯基)戊-1-烯通过JNK /AMPKα活化调节的内质网应激介导的凋亡途径触发胰腺β细胞死亡。
4-甲基-2,4-双(4-羟苯基)戊-1-烯(MBP)是双酚A(BPA)的主要活性代谢产物,在哺乳动物的肝脏中产生。一些研究表明,MBP比BPA具有更大的毒性。然而,MBP诱导的胰腺β细胞细胞毒性的潜在机制仍不清楚。这项研究证明了MBP在胰腺β细胞中的细胞毒性,并阐明了MBP诱导的β细胞死亡所涉及的细胞机制。我们的结果表明,MBP暴露显着降低细胞活力,引起胰岛素分泌功能障碍,并诱导凋亡事件,包括增加caspase-3活性以及caspase-3 / -7 / -9和PARP蛋白的活性形式的表达。此外,MBP触发内质网(ER)应激,如GRP 78,CHOP和裂解的caspase-12蛋白上调所表明的。用4-苯基丁酸(4-PBA; ER应激的药理抑制剂)进行预处理可显着逆转MBP诱导的ER应激和凋亡相关信号。此外,暴露于MBP会显着诱导JNK和AMP激活的蛋白激酶(AMPK)α的蛋白磷酸化。分别用JNK(SP600125)和AMPK(化合物C)的药理抑制剂预处理β细胞,可有效消除MBP诱导的凋亡相关信号。JNK和AMPK抑制剂也都抑制了MBP诱导的JNK和AMPKα以及彼此之间的激活。总之,这些发现表明,MBP暴露通过JNK和AMPKα的相互依赖激活而对β细胞产生细胞毒性,从而调节下游的凋亡信号通路。(ER应激的药理抑制剂)明显逆转了MBP诱导的ER应激和凋亡相关信号。此外,暴露于MBP会显着诱导JNK和AMP激活的蛋白激酶(AMPK)α的蛋白磷酸化。分别用JNK(SP600125)和AMPK(化合物C)的药理抑制剂预处理β细胞,可有效消除MBP诱导的凋亡相关信号。JNK和AMPK抑制剂也都抑制了MBP诱导的JNK和AMPKα以及彼此之间的激活。总之,这些发现表明,MBP暴露通过JNK和AMPKα的相互依赖激活而对β细胞产生细胞毒性,从而调节下游的凋亡信号通路。(ER应激的药理抑制剂)明显逆转了MBP诱导的ER应激和凋亡相关信号。此外,暴露于MBP会显着诱导JNK和AMP激活的蛋白激酶(AMPK)α的蛋白磷酸化。分别用JNK(SP600125)和AMPK(化合物C)的药理抑制剂预处理β细胞,可有效消除MBP诱导的凋亡相关信号。JNK和AMPK抑制剂也都抑制了MBP诱导的JNK和AMPKα以及彼此之间的激活。总之,这些发现表明,MBP暴露通过JNK和AMPKα的相互依赖激活而对β细胞产生细胞毒性,从而调节下游的凋亡信号通路。暴露于MBP会显着诱导JNK和AMP激活的蛋白激酶(AMPK)α的蛋白磷酸化。分别用JNK(SP600125)和AMPK(化合物C)的药理抑制剂预处理β细胞,可有效消除MBP诱导的凋亡相关信号。JNK和AMPK抑制剂也都抑制了MBP诱导的JNK和AMPKα以及彼此之间的激活。总之,这些发现表明,MBP暴露通过JNK和AMPKα的相互依赖激活而对β细胞产生细胞毒性,从而调节下游的凋亡信号通路。暴露于MBP会显着诱导JNK和AMP激活的蛋白激酶(AMPK)α的蛋白磷酸化。分别用JNK(SP600125)和AMPK(化合物C)的药理抑制剂预处理β细胞,可有效消除MBP诱导的凋亡相关信号。JNK和AMPK抑制剂也都抑制了MBP诱导的JNK和AMPKα以及彼此之间的激活。总之,这些发现表明,MBP暴露通过JNK和AMPKα的相互依赖激活而对β细胞产生细胞毒性,从而调节下游的凋亡信号通路。JNK和AMPK抑制剂也都抑制了MBP诱导的JNK和AMPKα以及彼此之间的激活。总之,这些发现表明,MBP暴露通过JNK和AMPKα的相互依赖激活而对β细胞产生细胞毒性,从而调节下游的凋亡信号通路。JNK和AMPK抑制剂也都抑制了MBP诱导的JNK和AMPKα以及彼此之间的激活。总之,这些发现表明,MBP暴露通过JNK和AMPKα的相互依赖激活而对β细胞产生细胞毒性,从而调节下游的凋亡信号通路。