当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Insulating and Robust Ceramic Nanorod Aerogels with High-Temperature Resistance over 1400 °C
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-04-20 , DOI: 10.1021/acsami.1c02501 Enshuang Zhang 1 , Wanlin Zhang 1 , Tong lv 1 , Jian Li 1 , Jingxin Dai 1 , Fan Zhang 1 , Yingmin Zhao 1 , Jinying Yang 1 , Wenjing Li 1 , Hao Zhang 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-04-20 , DOI: 10.1021/acsami.1c02501 Enshuang Zhang 1 , Wanlin Zhang 1 , Tong lv 1 , Jian Li 1 , Jingxin Dai 1 , Fan Zhang 1 , Yingmin Zhao 1 , Jinying Yang 1 , Wenjing Li 1 , Hao Zhang 1
Affiliation
Ceramic aerogels, which present a unique combination of low thermal conductivity and excellent high-temperature stability, are attractive for thermal insulation under extreme conditions. However, most ceramic aerogels are constructed by oxide ceramic nanoparticles and thus are usually plagued by their brittleness and structural collapse at elevated temperatures (less than 1000 °C). Despite great progress achieved in this regard recently, it still remains a big challenge to design and fabricate intriguing ceramic aerogels with enhanced mechanical strength and remarkable thermal stability at ultrahigh temperature up to 1400 °C. To this end, we herein report a facile and scalable strategy to manufacture ceramic nanorod aerogels (CNRAs) with hierarchically macroporous and mesoporous structures by the controllable assembly of Al2O3 nanorods and SiO2 nanoparticles. Subsequently, the high-temperature annealing treatment of CNRAs significantly maximizes mechanical strength and promotes thermal tolerance. The obtained CNRAs demonstrate the integrated properties of super-strong heat resistance (up to 1400 °C), low thermal conductivity (0.026 W/m·K at 25 °C and 0.089 W/m·K at 1200 °C), high mechanical robustness (compressive strength 1.5 MPa), and low density (0.146 g/cm3). We envision that this novel nanorod-assembled ceramic aerogels offer considerable advantages than most of the state-of-the-art ceramic aerogels for thermal superinsulation upon exposure to extremely harsh environments.
中文翻译:
耐高温1400°C以上的绝缘且坚固的陶瓷纳米棒气凝胶
陶瓷气凝胶具有低导热率和出色的高温稳定性的独特组合,在极端条件下具有极好的保温隔热性能。但是,大多数陶瓷气凝胶是由氧化物陶瓷纳米颗粒构成的,因此通常在高温(低于1000°C)下会因其脆性和结构塌陷而受到困扰。尽管最近在这方面取得了很大的进步,但设计和制造耐候性陶瓷气凝胶仍然具有很大的挑战,这些气凝胶在高达1400°C的超高温下具有增强的机械强度和出色的热稳定性。为此,我们在本文中报告了一种通过Al的可控组装来制造具有分层大孔和中孔结构的陶瓷纳米棒气凝胶(CNRA)的简便且可扩展的策略。2 O 3纳米棒和SiO 2纳米颗粒。随后,CNRA的高温退火处理极大地提高了机械强度并提高了耐热性。所获得的CNRA表现出以下综合特性:超强的耐热性(高达1400°C),低导热率(25°C时为0.026 W / m·K和1200°C时为0.089 W / m·K),机械性能高坚固(抗压强度1.5 MPa)和低密度(0.146 g / cm 3)。我们设想,这种新颖的纳米棒组装陶瓷气凝胶比暴露于极端恶劣环境下的绝热绝热的大多数最新技术陶瓷气凝胶具有显着优势。
更新日期:2021-05-05
中文翻译:
耐高温1400°C以上的绝缘且坚固的陶瓷纳米棒气凝胶
陶瓷气凝胶具有低导热率和出色的高温稳定性的独特组合,在极端条件下具有极好的保温隔热性能。但是,大多数陶瓷气凝胶是由氧化物陶瓷纳米颗粒构成的,因此通常在高温(低于1000°C)下会因其脆性和结构塌陷而受到困扰。尽管最近在这方面取得了很大的进步,但设计和制造耐候性陶瓷气凝胶仍然具有很大的挑战,这些气凝胶在高达1400°C的超高温下具有增强的机械强度和出色的热稳定性。为此,我们在本文中报告了一种通过Al的可控组装来制造具有分层大孔和中孔结构的陶瓷纳米棒气凝胶(CNRA)的简便且可扩展的策略。2 O 3纳米棒和SiO 2纳米颗粒。随后,CNRA的高温退火处理极大地提高了机械强度并提高了耐热性。所获得的CNRA表现出以下综合特性:超强的耐热性(高达1400°C),低导热率(25°C时为0.026 W / m·K和1200°C时为0.089 W / m·K),机械性能高坚固(抗压强度1.5 MPa)和低密度(0.146 g / cm 3)。我们设想,这种新颖的纳米棒组装陶瓷气凝胶比暴露于极端恶劣环境下的绝热绝热的大多数最新技术陶瓷气凝胶具有显着优势。