当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dual-Functional Aligned and Interconnected Graphite Nanoplatelet Networks for Accelerating Solar Thermal Energy Harvesting and Storage within Phase Change Materials
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-04-19 , DOI: 10.1021/acsami.0c22814 Si Wu 1 , Tingxian Li 1 , Minqiang Wu 1 , Jiaxing Xu 1 , Jingwei Chao 1 , Yihao Hu 1 , Taisen Yan 1 , Qin-Yi Li 2 , Ruzhu Wang 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-04-19 , DOI: 10.1021/acsami.0c22814 Si Wu 1 , Tingxian Li 1 , Minqiang Wu 1 , Jiaxing Xu 1 , Jingwei Chao 1 , Yihao Hu 1 , Taisen Yan 1 , Qin-Yi Li 2 , Ruzhu Wang 1
Affiliation
Solar thermal energy conversion and storage within phase change materials (PCMs) can overcome solar radiation intermittency to enable continuous operation of many heating-related processes. However, the energy-harvesting performance of current storage systems is always limited by low efficiencies in either solar thermal energy conversion or thermal transport within PCMs. Although PCM-based nanocomposites can address one or both of these issues, achieving high-performance composites with simultaneously enhanced photothermal performance and thermal transport capacity remains challenging. Here, we demonstrate that dual-functional aligned and interconnected graphite nanoplatelet networks (AIGNNs) yield the synergistic enhancement of interfacial photothermal conversion and thermal transport within PCMs to accelerate the solar thermal energy harvesting and storage. The AIGNNs include the naked part as the three-dimensional optical absorber and the incorporated part as thermally conductive pathways within PCMs. First, a phase change composite composed of the AIGNNs and the solid–solid PCM of polyhydric alcohol is synthesized using a facile three-step method, and shows 400% thermal conductivity enhancement for per 1 wt % graphite loading compared to pristine PCMs. After the elaborate surface treatment, a small part of the graphite networks is in situ exposed as the 3D optical absorber to boost the surface full-spectrum sunlight absorptivity up to 95%. This dual function design takes full advantage of the integrated AIGNNs in terms of both photothermal conversion and thermal transport capacities, superior to the traditional coating-enhanced photothermal conversion. This work offers a promising route to accelerating solar thermal energy harvesting and storage within PCMs.
中文翻译:
双功能排列和互连的石墨纳米片状网络,用于加速相变材料中太阳能热能的收集和存储
相变材料(PCM)中的太阳能热能转换和存储可以克服太阳辐射的间歇性,从而使许多与加热有关的过程能够连续运行。但是,当前存储系统的能量收集性能始终受到太阳能热能转换或PCM内部热传输效率低下的限制。尽管基于PCM的纳米复合材料可以解决这些问题中的一个或两个,但要实现高性能复合材料并同时提高光热性能和热传输能力仍然是一项挑战。这里,我们证明了双重功能的对齐和互连的石墨纳米薄片网络(AIGNNs)产生了PCM内部界面光热转换和热传输的协同增强,从而加速了太阳能热能的收集和存储。AIGNNs包括裸露的部分作为三维光吸收器,并引入的部分作为PCM内部的导热通道。首先,使用简便的三步法合成由AIGNN和多元醇的固-固PCM组成的相变复合材料,与原始PCM相比,每添加1 wt%的石墨,其导热率提高400%。经过精心的表面处理 一小部分石墨网络作为3D光学吸收剂被原位暴露,以将表面的全光谱太阳光吸收率提高到95%。这种双重功能设计在光热转换和热传输能力方面都充分利用了集成的AIGNN,优于传统的涂层增强型光热转换。这项工作为加快PCM内部太阳能热能的收集和存储提供了一条有希望的途径。
更新日期:2021-04-29
中文翻译:
双功能排列和互连的石墨纳米片状网络,用于加速相变材料中太阳能热能的收集和存储
相变材料(PCM)中的太阳能热能转换和存储可以克服太阳辐射的间歇性,从而使许多与加热有关的过程能够连续运行。但是,当前存储系统的能量收集性能始终受到太阳能热能转换或PCM内部热传输效率低下的限制。尽管基于PCM的纳米复合材料可以解决这些问题中的一个或两个,但要实现高性能复合材料并同时提高光热性能和热传输能力仍然是一项挑战。这里,我们证明了双重功能的对齐和互连的石墨纳米薄片网络(AIGNNs)产生了PCM内部界面光热转换和热传输的协同增强,从而加速了太阳能热能的收集和存储。AIGNNs包括裸露的部分作为三维光吸收器,并引入的部分作为PCM内部的导热通道。首先,使用简便的三步法合成由AIGNN和多元醇的固-固PCM组成的相变复合材料,与原始PCM相比,每添加1 wt%的石墨,其导热率提高400%。经过精心的表面处理 一小部分石墨网络作为3D光学吸收剂被原位暴露,以将表面的全光谱太阳光吸收率提高到95%。这种双重功能设计在光热转换和热传输能力方面都充分利用了集成的AIGNN,优于传统的涂层增强型光热转换。这项工作为加快PCM内部太阳能热能的收集和存储提供了一条有希望的途径。