当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
“Two Ships in a Bottle” Design for Zn–Ag–O Catalyst Enabling Selective and Long-Lasting CO2 Electroreduction
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2021-04-14 , DOI: 10.1021/jacs.0c12418 Zhen Zhang 1 , Guobin Wen 1 , Dan Luo 1 , Bohua Ren 1 , Yanfei Zhu 1 , Rui Gao 1 , Haozhen Dou 1 , Guiru Sun 2 , Ming Feng 2 , Zhengyu Bai 3 , Aiping Yu 1 , Zhongwei Chen 1
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2021-04-14 , DOI: 10.1021/jacs.0c12418 Zhen Zhang 1 , Guobin Wen 1 , Dan Luo 1 , Bohua Ren 1 , Yanfei Zhu 1 , Rui Gao 1 , Haozhen Dou 1 , Guiru Sun 2 , Ming Feng 2 , Zhengyu Bai 3 , Aiping Yu 1 , Zhongwei Chen 1
Affiliation
Electrochemical CO2 reduction (CO2RR) using renewable energy sources represents a sustainable means of producing carbon-neutral fuels. Unfortunately, low energy efficiency, poor product selectivity, and rapid deactivation are among the most intractable challenges of CO2RR electrocatalysts. Here, we strategically propose a “two ships in a bottle” design for ternary Zn–Ag–O catalysts, where ZnO and Ag phases are twinned to constitute an individual ultrafine nanoparticle impregnated inside nanopores of an ultrahigh-surface-area carbon matrix. Bimetallic electron configurations are modulated by constructing a Zn–Ag–O interface, where the electron density reconfiguration arising from electron delocalization enhances the stabilization of the *COOH intermediate favorable for CO production, while promoting CO selectivity and suppressing HCOOH generation by altering the rate-limiting step toward a high thermodynamic barrier for forming HCOO*. Moreover, the pore-constriction mechanism restricts the bimetallic particles to nanosized dimensions with abundant Zn–Ag–O heterointerfaces and exposed active sites, meanwhile prohibiting detachment and agglomeration of nanoparticles during CO2RR for enhanced stability. The designed catalysts realize 60.9% energy efficiency and 94.1 ± 4.0% Faradaic efficiency toward CO, together with a remarkable stability over 6 days. Beyond providing a high-performance CO2RR electrocatalyst, this work presents a promising catalyst-design strategy for efficient energy conversion.
中文翻译:
Zn-Ag-O催化剂的“两瓶装”设计可实现选择性和持久的CO 2电还原
使用可再生能源的电化学CO 2还原(CO 2 RR)代表了一种生产碳中性燃料的可持续方式。不幸的是,低能效,较差的产品选择性和快速失活是CO 2最棘手的挑战RR电催化剂。在这里,我们策略性地提出了一种用于三元Zn-Ag-O催化剂的“两瓶装”设计,其中ZnO和Ag相孪生在一起,构成了一个浸入超高表面积碳基质纳米孔内部的单个超细纳米颗粒。通过构造Zn–Ag–O界面来调节双金属电子构型,其中电子离域引起的电子密度重构增强了* COOH中间体的稳定性,从而有利于CO的产生,同时通过改变速率-促进了CO的选择性并抑制了HCOOH的产生。限制了向形成HCOO *的高热力学屏障的步伐。此外,孔收缩机制将双金属颗粒限制在具有丰富的Zn-Ag-O异质界面和暴露的活性位点的纳米尺寸上,2 RR增强稳定性。设计的催化剂可实现60.9%的能源效率和94.1±4.0%的CO法拉第效率,并在6天之内具有出色的稳定性。除了提供高性能的CO 2 RR电催化剂以外,这项工作还提出了一种有前途的催化剂设计策略,以实现高效的能量转换。
更新日期:2021-05-12
中文翻译:
Zn-Ag-O催化剂的“两瓶装”设计可实现选择性和持久的CO 2电还原
使用可再生能源的电化学CO 2还原(CO 2 RR)代表了一种生产碳中性燃料的可持续方式。不幸的是,低能效,较差的产品选择性和快速失活是CO 2最棘手的挑战RR电催化剂。在这里,我们策略性地提出了一种用于三元Zn-Ag-O催化剂的“两瓶装”设计,其中ZnO和Ag相孪生在一起,构成了一个浸入超高表面积碳基质纳米孔内部的单个超细纳米颗粒。通过构造Zn–Ag–O界面来调节双金属电子构型,其中电子离域引起的电子密度重构增强了* COOH中间体的稳定性,从而有利于CO的产生,同时通过改变速率-促进了CO的选择性并抑制了HCOOH的产生。限制了向形成HCOO *的高热力学屏障的步伐。此外,孔收缩机制将双金属颗粒限制在具有丰富的Zn-Ag-O异质界面和暴露的活性位点的纳米尺寸上,2 RR增强稳定性。设计的催化剂可实现60.9%的能源效率和94.1±4.0%的CO法拉第效率,并在6天之内具有出色的稳定性。除了提供高性能的CO 2 RR电催化剂以外,这项工作还提出了一种有前途的催化剂设计策略,以实现高效的能量转换。