当前位置:
X-MOL 学术
›
ACS Appl. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fabrication of a Facet-Oriented BiVO4 Photoanode by Particle Engineering for Promotion of Charge Separation Efficiency
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-04-14 , DOI: 10.1021/acsaem.1c00694 Boyang Zhang 1, 2 , Yao Xiang 1, 2 , Mei Guo 1 , Jiaming Wang 1, 2 , Kaiwei Liu 1, 2 , Wenrui Lin 1 , Guijun Ma 1
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-04-14 , DOI: 10.1021/acsaem.1c00694 Boyang Zhang 1, 2 , Yao Xiang 1, 2 , Mei Guo 1 , Jiaming Wang 1, 2 , Kaiwei Liu 1, 2 , Wenrui Lin 1 , Guijun Ma 1
Affiliation
Facet regulation of the BiVO4 photoanode is an effective way to improve its charge separation efficiency. Herein, a BiVO4 photoanode structured by connecting a (040)-facet-oriented mono-grain layer to a conductive metal substrate was fabricated by particle engineering, namely a Langmuir–Blodgett assembly process followed by the particle transfer technique. The as-prepared electrode produced superior photocurrent and higher charge separation efficiency than that prepared by randomly accumulating the BiVO4 particles on a metal substrate. Impedance spectroscopy, time-resolved photoluminescence spectra, and theoretical analysis revealed that the (040)-facet-oriented photoelectrode had a relatively lower bulk charge transport resistance and higher electron–hole separation efficiency. Inserting Au nanoparticles into the BiVO4/substrate interlayer further enhanced its photo activity via accelerating electron transfer and preventing electron–hole recombination at the particle/substrate interface. A CoOx-loaded BiVO4/Au/Ti/Sn electrode fabricated by the particle engineering process evolved O2 by water oxidation with a Faradaic efficiency of unity. This work provides a potential scalable strategy of enhancing photoelectrochemical activity by assembly of grain orientations, which is applicable to those semiconductor photocatalysts having face-selective anisotropic electron transfer property.
中文翻译:
通过粒子工程制造面向面的BiVO 4光电阳极,以提高电荷分离效率
BiVO 4光电阳极的刻面调节是提高其电荷分离效率的有效途径。本文中,通过粒子工程(即Langmuir-Blodgett组装工艺,然后进行粒子转移技术)制造了通过将(040)面取向的单晶粒层连接到导电金属基板上而构成的BiVO 4光电阳极。所制备的电极比通过随机积累BiVO 4制备的电极具有更高的光电流和更高的电荷分离效率。金属基板上的颗粒。阻抗光谱,时间分辨光致发光光谱和理论分析表明,(040)面取向的光电极具有较低的体电荷传输电阻和较高的电子-空穴分离效率。将Au纳米颗粒插入BiVO 4 /基质夹层中可通过加速电子转移并防止颗粒/基质界面处的电子-空穴复合来进一步增强其光活性。通过粒子工程工艺制备的负载CoO x的BiVO 4 / Au / Ti / Sn电极释放出O 2通过水氧化,具有法拉第效率。这项工作提供了一种潜在的可扩展的策略,可以通过晶粒取向的组装来增强光电化学活性,该策略可应用于具有面选择各向异性电子转移特性的那些半导体光催化剂。
更新日期:2021-04-26
中文翻译:
通过粒子工程制造面向面的BiVO 4光电阳极,以提高电荷分离效率
BiVO 4光电阳极的刻面调节是提高其电荷分离效率的有效途径。本文中,通过粒子工程(即Langmuir-Blodgett组装工艺,然后进行粒子转移技术)制造了通过将(040)面取向的单晶粒层连接到导电金属基板上而构成的BiVO 4光电阳极。所制备的电极比通过随机积累BiVO 4制备的电极具有更高的光电流和更高的电荷分离效率。金属基板上的颗粒。阻抗光谱,时间分辨光致发光光谱和理论分析表明,(040)面取向的光电极具有较低的体电荷传输电阻和较高的电子-空穴分离效率。将Au纳米颗粒插入BiVO 4 /基质夹层中可通过加速电子转移并防止颗粒/基质界面处的电子-空穴复合来进一步增强其光活性。通过粒子工程工艺制备的负载CoO x的BiVO 4 / Au / Ti / Sn电极释放出O 2通过水氧化,具有法拉第效率。这项工作提供了一种潜在的可扩展的策略,可以通过晶粒取向的组装来增强光电化学活性,该策略可应用于具有面选择各向异性电子转移特性的那些半导体光催化剂。