当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Metal–Organic Framework Membranes Encapsulating Gold Nanoparticles for Direct Plasmonic Photocatalytic Nitrogen Fixation
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2021-04-13 , DOI: 10.1021/jacs.0c13342 Li-Wei Chen 1 , Yu-Chen Hao 1 , Yu Guo 2 , Qinghua Zhang 3 , Jiani Li 1 , Wen-Yan Gao 1 , Lantian Ren 1 , Xin Su 1 , Linyu Hu 1 , Nan Zhang 1 , Siwu Li 1 , Xiao Feng 1, 4 , Lin Gu 3 , Ya-Wen Zhang 2 , An-Xiang Yin 1 , Bo Wang 1, 4
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2021-04-13 , DOI: 10.1021/jacs.0c13342 Li-Wei Chen 1 , Yu-Chen Hao 1 , Yu Guo 2 , Qinghua Zhang 3 , Jiani Li 1 , Wen-Yan Gao 1 , Lantian Ren 1 , Xin Su 1 , Linyu Hu 1 , Nan Zhang 1 , Siwu Li 1 , Xiao Feng 1, 4 , Lin Gu 3 , Ya-Wen Zhang 2 , An-Xiang Yin 1 , Bo Wang 1, 4
Affiliation
Photocatalytic nitrogen fixation reaction can harvest the solar energy to convert the abundant but inert N2 into NH3. Here, utilizing metal–organic framework (MOF) membranes as the ideal assembly of nanoreactors to disperse and confine gold nanoparticles (AuNPs), we realize the direct plasmonic photocatalytic nitrogen fixation under ambient conditions. Upon visible irradiation, the hot electrons generated on the AuNPs can be directly injected into the N2 molecules adsorbed on Au surfaces. Such N2 molecules can be additionally activated by the strong but evanescently localized surface plasmon resonance field, resulting in a supralinear intensity dependence of the ammonia evolution rate with much higher apparent quantum efficiency and lower apparent activation energy under stronger irradiation. Moreover, the gas-permeable Au@MOF membranes, consisting of numerous interconnected nanoreactors, can ensure the dispersity and stability of AuNPs, further facilitate the mass transfer of N2 molecules and (hydrated) protons, and boost the plasmonic photocatalytic reactions at the designed gas–membrane–solution interface. As a result, an ammonia evolution rate of 18.9 mmol gAu–1 h–1 was achieved under visible light (>400 nm, 100 mW cm–2) with an apparent quantum efficiency of 1.54% at 520 nm.
中文翻译:
金属-有机骨架膜包裹金纳米粒子,用于直接等离子光催化氮固定
光催化固氮反应可以收获太阳能,将大量但惰性的N 2转化为NH 3。在这里,利用金属-有机骨架(MOF)膜作为纳米反应器的理想组件来分散和限制金纳米颗粒(AuNPs),我们实现了在环境条件下的直接等离激元光催化固氮。在可见光照射下,在AuNPs上产生的热电子可以直接注入吸附在Au表面的N 2分子中。这样的N 2分子可以被强而短暂消失的表面等离振子共振场额外激活,从而导致氨释放速率的超线性强度依赖性,在强辐射下具有更高的表观量子效率和更低的表观活化能。此外,由大量相互连接的纳米反应器组成的透气性Au @ MOF膜可确保AuNP的分散性和稳定性,进一步促进N 2分子和(水合)质子的传质,并在设计时促进等离子体激元的光催化反应。气-膜-溶液界面。结果,在可见光(> 400 nm,100 mW cm –2)下,氨的析出速率为18.9 mmol g Au –1 h –1)在520 nm的表观量子效率为1.54%。
更新日期:2021-04-21
中文翻译:
金属-有机骨架膜包裹金纳米粒子,用于直接等离子光催化氮固定
光催化固氮反应可以收获太阳能,将大量但惰性的N 2转化为NH 3。在这里,利用金属-有机骨架(MOF)膜作为纳米反应器的理想组件来分散和限制金纳米颗粒(AuNPs),我们实现了在环境条件下的直接等离激元光催化固氮。在可见光照射下,在AuNPs上产生的热电子可以直接注入吸附在Au表面的N 2分子中。这样的N 2分子可以被强而短暂消失的表面等离振子共振场额外激活,从而导致氨释放速率的超线性强度依赖性,在强辐射下具有更高的表观量子效率和更低的表观活化能。此外,由大量相互连接的纳米反应器组成的透气性Au @ MOF膜可确保AuNP的分散性和稳定性,进一步促进N 2分子和(水合)质子的传质,并在设计时促进等离子体激元的光催化反应。气-膜-溶液界面。结果,在可见光(> 400 nm,100 mW cm –2)下,氨的析出速率为18.9 mmol g Au –1 h –1)在520 nm的表观量子效率为1.54%。