当前位置: X-MOL 学术Coord. Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
MOF-derived hollow heterostructures for advanced electrocatalysis
Coordination Chemistry Reviews ( IF 20.3 ) Pub Date : 2021-04-13 , DOI: 10.1016/j.ccr.2021.213946
Zhao Li , Ming Song , Wenyou Zhu , Wenchang Zhuang , Xihua Du , Lin Tian

Hollow nanostructures, particularly for hollow heterotructures that derived from metal-organic-framework (MOF), show great promise for the application in electrochemical conversion and storage owing to their favorable geometric morphology and electronic structure. To fulfill the increasing global demand for renewable and sustainable energy sources, significant research efforts have been devoted to the design and fabrication of well-defined hollow heterostructures with manipulated geometric morphology, modified surface and heterointerfaces, optimized electronic structure, and diverse composition in the past decade. Here, a comprehensive overview of the compositional and structural properties of hollow heterostructure, which provides a large surface area, void spaces, and multiple interfaces for electrolytes/reactants impregnation, reduced diffusion lengths for mass transport, as well as structural strength for suppressing agglomeration, is firstly presented. Thereafter, a brief classification of the design and construction of hollow heterotructures that derived from MOFs is also described, including template-induced assembly, dissolution-regeneration, selective chemical etching, etc. Subsequently, the niche applications of hollow heterotructures as electrode materials for oxygen- and hydrogen- involved energy conversion devices, and rechargeable batteries are particularly highlighted. Finally, the emerging challenges and further research directions of hollow heterotructures for electrochemical energy conversion and storage are also concluded.



中文翻译:

MOF衍生的中空异质结构用于高级电催化

空心纳米结构,特别是用于衍生自金属-有机框架(MOF)的空心异质结构,由于其良好的几何形态和电子结构,在电化学转化和存储中具有广阔的应用前景。为了满足全球对可再生和可持续能源日益增长的需求,过去,人们致力于设计和制造具有可控几何形态,修饰的表面和异质界面,优化的电子结构以及多样化组成的轮廓分明的空心异质结构。十年。在此,对空心异质结构的组成和结构特性进行了全面概述,该结构提供了较大的表面积,空隙空间以及用于电解质/反应物浸渍的多个界面,首先介绍了减少的传质扩散长度,以及抑制结块的结构强度。此后,还描述了从MOF衍生的空心异质结构的设计和构造的简要分类,包括模板诱导的组装,溶解-再生,选择性化学蚀刻等。随后,空心异质结构作为氧的电极材料的利基应用尤其强调与氢有关的能量转换装置以及可充电电池。最后,总结了中空异质结构用于电化学能量转换和存储的新挑战和进一步的研究方向。还描述了由MOF衍生的空心异质结构的设计和构造的简要分类,包括模板诱导的组装,溶解再生,选择性化学蚀刻等。特别强调涉及氢气的能量转换装置和可充电电池。最后,总结了中空异质结构用于电化学能量转换和存储的新挑战和进一步的研究方向。还描述了由MOF衍生的空心异质结构的设计和构造的简要分类,包括模板诱导的组装,溶解再生,选择性化学蚀刻等。特别强调涉及氢气的能量转换装置和可充电电池。最后,总结了中空异质结构用于电化学能量转换和存储的新挑战和进一步的研究方向。特别强调了中空异质结构作为涉及氧和氢的能量转换装置和可充电电池的电极材料的利基应用。最后,总结了中空异质结构用于电化学能量转换和存储的新挑战和进一步的研究方向。特别强调了中空异质结构作为涉及氧和氢的能量转换装置和可充电电池的电极材料的利基应用。最后,总结了中空异质结构用于电化学能量转换和存储的新挑战和进一步的研究方向。

更新日期:2021-04-13
down
wechat
bug