当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synergistics of Fe3C and Fe on Mesoporous Fe–N–C Sulfur Host for Nearly Complete and Fast Lithium Polysulfide Conversion
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-04-06 , DOI: 10.1021/acsami.1c01393 Siyuan Gao 1, 2 , Fan Xia 1 , Bomin Li 1, 2 , Iddrisu B. Abdul Razak 3 , Yuzi Liu 4 , Ke Lu 1 , Dennis E. Brown 3 , Rongyue Wang 2 , Yingwen Cheng 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-04-06 , DOI: 10.1021/acsami.1c01393 Siyuan Gao 1, 2 , Fan Xia 1 , Bomin Li 1, 2 , Iddrisu B. Abdul Razak 3 , Yuzi Liu 4 , Ke Lu 1 , Dennis E. Brown 3 , Rongyue Wang 2 , Yingwen Cheng 1
Affiliation
The practical deployment of advanced Li–S batteries is severely constrained by the uncontrollable lithium polysulfide conversion under realistic conditions. Although a plethora of advanced sulfur hosts and electrocatalysts have been examined, the fundamental mechanisms are still elusive and predictive design approaches have not yet been established. Here, we examined a series of well-defined Fe–N–C sulfur hosts with systematically varied and strongly coupled Fe3C and Fe electrocatalysts, prepared by one-step pyrolysis of a novel Fex[Fe(CN)6]y/polypyrrole composite at different temperatures. We revealed the key roles of Fe3C and metallic Fe on modulating polysulfide conversion, in that the polar Fe3C strongly adsorbs polysulfide whereas the Fe particles catalyze fast polysulfide conversion. We then highlight the superior performance of the rational host with strongly coupled Fe3C and Fe on mesoporous Fe–N–C host on promoting nearly complete polysulfide conversion, especially for the challenging short-chain Li2S4 conversion to Li2S. The electrodeposited Li2S on this host was extremely reactive and can be readily charged back to S with minimal activation overpotential. Overall, Li–S batteries equipped with the novel sulfur host delivered a high specific capacity of 1350 mAh g–1 at 0.1C with a capacity retention of 96% after 200 cycles. This work provides new insights on the functional mechanism of advanced sulfur hosts, which could eventually translate into new design principles for practical Li–S batteries.
中文翻译:
Fe 3 N和中孔Fe–N–C硫基质上Fe 3 C和Fe的协同作用,可实现近乎完全和快速的多硫化锂转化
在实际条件下,无法控制的多硫化锂转化严重限制了高级Li–S电池的实际部署。尽管已经研究了许多高级硫主体和电催化剂,但是其基本机理仍然难以捉摸,并且尚未建立可预测的设计方法。在这里,我们研究了一系列定义明确的Fe–N–C硫主体,这些主体具有系统地变化且强耦合的Fe 3 C和Fe电催化剂,是通过新型Fe x [Fe(CN)6 ] y /一步热解制备的聚吡咯复合物在不同温度下。我们揭示了Fe 3 C和金属Fe在调节多硫化物转化中的关键作用,因为极性Fe3 C强烈吸附多硫化物,而Fe颗粒则催化快速的多硫化物转化。然后,我们突出显示与强耦合的Fe理性主机的性能优越3 C和铁的Fe介孔-N-C主机上促进几乎完全转化多硫化物,特别是对具有挑战性的短链栗2小号4转换到李2 S.在该主体上电沉积的Li 2 S具有极强的反应性,可以很容易地以最小的活化超电势带回S。总体而言,配备新型硫磺主体的Li–S电池可提供1350 mAh g –1的高比容量。200次循环后,在0.1C下保持96%的容量保持率。这项工作为高级硫磺主体的功能机理提供了新的见解,最终可以转化为实用的Li-S电池的新设计原理。
更新日期:2021-04-21
中文翻译:
Fe 3 N和中孔Fe–N–C硫基质上Fe 3 C和Fe的协同作用,可实现近乎完全和快速的多硫化锂转化
在实际条件下,无法控制的多硫化锂转化严重限制了高级Li–S电池的实际部署。尽管已经研究了许多高级硫主体和电催化剂,但是其基本机理仍然难以捉摸,并且尚未建立可预测的设计方法。在这里,我们研究了一系列定义明确的Fe–N–C硫主体,这些主体具有系统地变化且强耦合的Fe 3 C和Fe电催化剂,是通过新型Fe x [Fe(CN)6 ] y /一步热解制备的聚吡咯复合物在不同温度下。我们揭示了Fe 3 C和金属Fe在调节多硫化物转化中的关键作用,因为极性Fe3 C强烈吸附多硫化物,而Fe颗粒则催化快速的多硫化物转化。然后,我们突出显示与强耦合的Fe理性主机的性能优越3 C和铁的Fe介孔-N-C主机上促进几乎完全转化多硫化物,特别是对具有挑战性的短链栗2小号4转换到李2 S.在该主体上电沉积的Li 2 S具有极强的反应性,可以很容易地以最小的活化超电势带回S。总体而言,配备新型硫磺主体的Li–S电池可提供1350 mAh g –1的高比容量。200次循环后,在0.1C下保持96%的容量保持率。这项工作为高级硫磺主体的功能机理提供了新的见解,最终可以转化为实用的Li-S电池的新设计原理。