Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
1D Mixed-Stack Cocrystals Based on Perylene Diimide toward Ambipolar Charge Transport
Small ( IF 13.0 ) Pub Date : 2021-04-06 , DOI: 10.1002/smll.202006574 Panpan Yu 1, 2 , Yang Li 2 , Huijuan Zhao 3, 4 , Lingyun Zhu 5 , Yongshuai Wang 2 , Wei Xu 2 , Yonggang Zhen 2, 6 , Xinran Wang 3 , Huanli Dong 2 , Daoben Zhu 2 , Wenping Hu 1, 7
Small ( IF 13.0 ) Pub Date : 2021-04-06 , DOI: 10.1002/smll.202006574 Panpan Yu 1, 2 , Yang Li 2 , Huijuan Zhao 3, 4 , Lingyun Zhu 5 , Yongshuai Wang 2 , Wei Xu 2 , Yonggang Zhen 2, 6 , Xinran Wang 3 , Huanli Dong 2 , Daoben Zhu 2 , Wenping Hu 1, 7
Affiliation
There is very limited repertoire of organic ambipolar semiconductors to date. Electron donor–acceptor alternative stacking is a unique and important binary motif for 1D mixed-stack cocrystals, opening up possibilities for the development of organic ambipolar semiconductors. Herein, four 1D mixed-stack cocrystals using N,N′-bis(perfluorobutyl)-1,7-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDICNF) as the acceptor and anthracene, pyrene, perylene, and meso-diphenyl tetrathia[22]annulene[2,1,2,1] (DPTTA) as the donors are achieved in a stoichiometric ratio (D:A = 1:1) through solution or vapor processed methods. Their packing structures, energy levels, charge transfer interactions, coassembling behaviors, and molecular orientations are systematically investigated by single-crystal X-ray analysis, absorption spectra, fluorescence quenching, Job's curve plot, and polarized photoluminescence measurements with the help of theoretical calculations. The donor–acceptor alternative stacking direction coincides with the long axis for all the four cocrystals. The field-effect transistors based on Pyrene-PDICNF show the electron mobility up to 0.19 cm2 V−1 s−1, which is the highest value among perylene diimide-based cocrystals. Moreover, DPTTA-PDICNF cocrystals possess well-balanced electron and hole mobility with 1.7 × 10−2 and 2.0 × 10−2 cm2 V−1 s−1 respectively due to both hole and electron strong superexchange interactions, shedding light on the design of 1D mixed-stack cocrystals with excellent ambipolar transport behaviors.
中文翻译:
基于苝二亚胺的一维混合堆叠共晶向双极性电荷传输
迄今为止,有机双极半导体的种类非常有限。电子供体 - 受体替代堆叠是一维混合堆叠共晶的独特且重要的二元基序,为有机双极半导体的开发开辟了可能性。在此,四个一维混合堆叠共晶使用N,N '-bis(perfluorobutyl)-1,7-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDICNF) 作为受体和蒽、芘、苝、和中观-二苯基四硫杂 [22] 环烯 [2,1,2,1] (DPTTA) 作为供体通过溶液或蒸汽处理方法以化学计量比 (D:A = 1:1) 获得。在理论计算的帮助下,通过单晶 X 射线分析、吸收光谱、荧光猝灭、Job 曲线图和偏振光致发光测量系统地研究了它们的堆积结构、能级、电荷转移相互作用、共组装行为和分子取向。供体-受体交替堆叠方向与所有四种共晶的长轴重合。基于芘-PDICNF 的场效应晶体管显示出高达 0.19 cm 2 V -1 s -1的电子迁移率,这是苝二亚胺基共晶中的最高值。此外,由于空穴和电子的强超交换相互作用,DPTTA-PDICNF 共晶具有良好平衡的电子和空穴迁移率,分别为 1.7 × 10 -2和 2.0 × 10 -2 cm 2 V -1 s -1,揭示了设计具有优异双极输运行为的一维混合堆叠共晶。
更新日期:2021-05-22
中文翻译:
基于苝二亚胺的一维混合堆叠共晶向双极性电荷传输
迄今为止,有机双极半导体的种类非常有限。电子供体 - 受体替代堆叠是一维混合堆叠共晶的独特且重要的二元基序,为有机双极半导体的开发开辟了可能性。在此,四个一维混合堆叠共晶使用N,N '-bis(perfluorobutyl)-1,7-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDICNF) 作为受体和蒽、芘、苝、和中观-二苯基四硫杂 [22] 环烯 [2,1,2,1] (DPTTA) 作为供体通过溶液或蒸汽处理方法以化学计量比 (D:A = 1:1) 获得。在理论计算的帮助下,通过单晶 X 射线分析、吸收光谱、荧光猝灭、Job 曲线图和偏振光致发光测量系统地研究了它们的堆积结构、能级、电荷转移相互作用、共组装行为和分子取向。供体-受体交替堆叠方向与所有四种共晶的长轴重合。基于芘-PDICNF 的场效应晶体管显示出高达 0.19 cm 2 V -1 s -1的电子迁移率,这是苝二亚胺基共晶中的最高值。此外,由于空穴和电子的强超交换相互作用,DPTTA-PDICNF 共晶具有良好平衡的电子和空穴迁移率,分别为 1.7 × 10 -2和 2.0 × 10 -2 cm 2 V -1 s -1,揭示了设计具有优异双极输运行为的一维混合堆叠共晶。