当前位置: X-MOL 学术ACS Appl. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Constructing Three-Dimensional Structured V2O5/Conductive Polymer Composite with Fast Ion/Electron Transfer Kinetics for Aqueous Zinc-Ion Battery
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-04-05 , DOI: 10.1021/acsaem.1c00573
Shenglong Li 1 , Xiujuan Wei 1 , Chaohao Wu 1 , Bingkai Zhang 1 , Shuxing Wu 1 , Zhan Lin 1
Affiliation  

Rechargeable aqueous zinc-ion batteries (ZIBs) are recognized as potential alternative devices for economical energy storage applications. However, the instable structure of cathodes and sluggish Zn2+ diffusion kinetics are the major challenges facing ZIBs. Here, intercalating conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) into vanadium oxide (named as PEDOT-VO) is designed to enhance the structure stability, Zn2+ intercalation/deintercalation, and electron transfer kinetics of V2O5. The larger interlayer spacing of 13.95 Å (compared to 4.38 Å for bare V2O5) and the three-dimensional structure are constructed by conductive polymer intercalation. As ZIB cathode materials, the as-prepared PEDOT-VO cathodes deliver a high specific capacity of 370.5 mA h g–1 at 0.5 A g–1 and 175 mA h g–1 even at 50 A g–1. Moreover, the long-life cycling of over 1000 cycles with a specific capacity of 310.1 mA h g–1 is also achieved. The superior electrochemical properties are ascribed to enlarged interlayer spacing and improved reaction kinetics. Quantification calculation results reveal that pseudocapacitance mainly contributes to the zinc-ion storage, leading to an ultrahigh rate capability.

中文翻译:

具有快速离子/电子转移动力学的三维结构V 2 O 5 /导电聚合物复合材料,用于水性锌离子电池

可再充电的水性锌离子电池(ZIB)被公认为是经济型储能应用的潜在替代设备。然而,阴极的不稳定结构和缓慢的Zn 2+扩散动力学是ZIBs面临的主要挑战。在此,设计将导电聚合物聚(3,4-乙撑二氧噻吩)(PEDOT)嵌入氧化钒中(命名为PEDOT-VO),以增强V 2 O 5的结构稳定性,Zn 2+嵌入/脱嵌以及电子转移动力学。。较大的层间距为13.95Å(相比之下,裸V 2 O 5的间距为4.38Å)和三维结构是通过导电聚合物插层构造的。作为ZIB阴极材料,所制备的PEDOT-VO阴极在0.5 A g –1时可提供370.5 mA hg –1的高比容量,甚至在50 A g –1时也可提供175 mA hg –1的高比容量。此外,还实现了超过1000个循环的长寿命循环,比容量为310.1 mA hg –1。优异的电化学性能归因于增大的层间间距和改善的反应动力学。量化计算结果表明,伪电容主要有助于锌离子的存储,从而具有超高倍率能力。
更新日期:2021-04-26
down
wechat
bug