当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electroless Pb Monolayer Deposition—Prelude for Further Advances in Catalyst Monolayer Synthesis via Surface Limited Redox Replacement Reaction
ACS Catalysis ( IF 11.3 ) Pub Date : 2021-04-02 , DOI: 10.1021/acscatal.0c05255 Kamyar Ahmadi 1 , Nikhil Dole 2 , Dongjun Wu 2 , Taha Salavati-Fard 3, 4 , Lars C. Grabow 1, 3, 4 , Francisco Carlos Robles Hernandez 1, 4, 5 , Stanko R. Brankovic 1, 2, 3
ACS Catalysis ( IF 11.3 ) Pub Date : 2021-04-02 , DOI: 10.1021/acscatal.0c05255 Kamyar Ahmadi 1 , Nikhil Dole 2 , Dongjun Wu 2 , Taha Salavati-Fard 3, 4 , Lars C. Grabow 1, 3, 4 , Francisco Carlos Robles Hernandez 1, 4, 5 , Stanko R. Brankovic 1, 2, 3
Affiliation
We point out a novel opportunity for catalyst monolayer and core–shell structures synthesis via the surface limited redox replacement (SLRR) reaction. It is enabled by discovery of an electroless Pb monolayer deposition phenomenon whose fundamentals and practical aspects are presented. The particular benefit of this synthesis approach is for metal substrates which are not part of broadly conductive supports such as metal nanoparticles embedded in various oxides or zeolites. Examples of the catalyst monolayer deposition via SLRR of electrolessly deposited Pb monolayer are presented under the auspices of a two-step electroless atomic layer deposition process (e-less ALD). Each cycle of the e-less ALD produces a precise submonolayer amount of catalyst deposit demonstrating its potential for a broad range of applications.
中文翻译:
化学铅单层沉积—通过表面受限氧化还原置换反应进一步推进催化剂单层合成的序幕
我们指出了通过表面受限氧化还原置换(SLRR)反应合成催化剂单层和核-壳结构的新机会。它通过发现化学无铅单层沉积现象得以实现,该现象的基本原理和实践方面均已介绍。这种合成方法的特别好处是对于不属于广泛导电载体(例如嵌入各种氧化物或沸石中的金属纳米颗粒)的金属基材。在两步化学镀原子层沉积工艺(无铅ALD)的主持下,提出了通过化学沉积的Pb单层的SLRR进行催化剂单层沉积的实例。无电子ALD的每个循环都会产生精确的亚单层量的催化剂沉积物,从而证明其在广泛应用中的潜力。
更新日期:2021-04-16
中文翻译:
化学铅单层沉积—通过表面受限氧化还原置换反应进一步推进催化剂单层合成的序幕
我们指出了通过表面受限氧化还原置换(SLRR)反应合成催化剂单层和核-壳结构的新机会。它通过发现化学无铅单层沉积现象得以实现,该现象的基本原理和实践方面均已介绍。这种合成方法的特别好处是对于不属于广泛导电载体(例如嵌入各种氧化物或沸石中的金属纳米颗粒)的金属基材。在两步化学镀原子层沉积工艺(无铅ALD)的主持下,提出了通过化学沉积的Pb单层的SLRR进行催化剂单层沉积的实例。无电子ALD的每个循环都会产生精确的亚单层量的催化剂沉积物,从而证明其在广泛应用中的潜力。