当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Alternating Multilayered Si3N4/SiC Aerogels for Broadband and High-Temperature Electromagnetic Wave Absorption up to 1000 °C
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-04-02 , DOI: 10.1021/acsami.1c02906 Zhixin Cai 1 , Lei Su 1 , Hongjie Wang 1 , Min Niu 1 , Liting Tao 1 , De Lu 1 , Liang Xu 1 , Mingzhu Li 1 , Hongfei Gao 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-04-02 , DOI: 10.1021/acsami.1c02906 Zhixin Cai 1 , Lei Su 1 , Hongjie Wang 1 , Min Niu 1 , Liting Tao 1 , De Lu 1 , Liang Xu 1 , Mingzhu Li 1 , Hongfei Gao 1
Affiliation
Lightweight electromagnetic (EM) wave absorbers made of ceramics have sparked tremendous interest for applications in EM wave interference protection at high temperatures. However, EM wave absorption by pure ceramics still faces huge challenges due to the lack of efficient EM wave attenuation modes. Inspired by the energy dissipation mechanism during fracture of lobster shells with a soft and stiff multilayered structure, we fabricate a high-performance EM wave absorption ceramic aerogel composed of an alternating multilayered wave transparent Si3N4 (N) layer and wave absorption SiC (C) layer by a simple restack method. The obtained N/C aerogel shows ultralow density (∼8 mg/cm3), broad effective absorption bandwidth (8.4 GHz), strong reflection loss (−45 dB) at room temperature, and excellent EM wave absorption performance at high temperatures up to 1000 °C. The attenuation of EM wave mainly results from a “reflection–absorption–zigzag reflection” process caused by the alternating multilayered structure. The superior absorption performance, especially at high temperatures, makes the N/C aerogel promising for next-generation wave absorption devices served in high-temperature environments.
中文翻译:
用于高达1000°C的宽带和高温电磁波吸收的交替多层Si 3 N 4 / SiC气凝胶
由陶瓷制成的轻型电磁(EM)吸波器引起了人们对高温下EM波干扰保护应用的极大兴趣。然而,由于缺乏有效的电磁波衰减模式,纯陶瓷吸收电磁波仍然面临巨大挑战。受具有软性和刚性多层结构的龙虾壳断裂过程中的能量耗散机制的启发,我们制造了一种高性能的电磁波吸收陶瓷气凝胶,该气凝胶由交替的多层波透明Si 3 N 4(N)层和波吸收SiC( C)通过简单的restack方法进行层。所获得的N / C气凝胶显示出超低密度(〜8 mg / cm 3),宽的有效吸收带宽(8.4 GHz),在室温下具有很强的反射损耗(−45 dB),在高达1000°C的高温下具有出色的EM波吸收性能。电磁波的衰减主要是由交替的多层结构引起的“反射-吸收-之字形反射”过程引起的。优异的吸收性能,尤其是在高温下,使得N / C气凝胶有望在高温环境下用于下一代波吸收装置。
更新日期:2021-04-14
中文翻译:
用于高达1000°C的宽带和高温电磁波吸收的交替多层Si 3 N 4 / SiC气凝胶
由陶瓷制成的轻型电磁(EM)吸波器引起了人们对高温下EM波干扰保护应用的极大兴趣。然而,由于缺乏有效的电磁波衰减模式,纯陶瓷吸收电磁波仍然面临巨大挑战。受具有软性和刚性多层结构的龙虾壳断裂过程中的能量耗散机制的启发,我们制造了一种高性能的电磁波吸收陶瓷气凝胶,该气凝胶由交替的多层波透明Si 3 N 4(N)层和波吸收SiC( C)通过简单的restack方法进行层。所获得的N / C气凝胶显示出超低密度(〜8 mg / cm 3),宽的有效吸收带宽(8.4 GHz),在室温下具有很强的反射损耗(−45 dB),在高达1000°C的高温下具有出色的EM波吸收性能。电磁波的衰减主要是由交替的多层结构引起的“反射-吸收-之字形反射”过程引起的。优异的吸收性能,尤其是在高温下,使得N / C气凝胶有望在高温环境下用于下一代波吸收装置。