Chem ( IF 19.1 ) Pub Date : 2021-03-31 , DOI: 10.1016/j.chempr.2021.03.005 John P. Carpenter , Charlie T. McTernan , Jake L. Greenfield , Roy Lavendomme , Tanya K. Ronson , Jonathan R. Nitschke
The knotting of biomolecules impacts their function and enables them to carry out new tasks. Likewise, complex topologies underpin the operation of many synthetic molecular machines. The ability to generate and control more complex architectures is essential to endow these machines with more advanced functions. Here, we report the synthesis of a molecular knot with eight crossing points, consisting of a single organic loop woven about six templating metal centers, via one-pot self-assembly from a pair of simple dialdehyde and diamine subcomponents and a single metal salt. The structure and topology of the knot were established by NMR spectroscopy, mass spectrometry, and X-ray crystallography. Upon demetallation, the purely organic strand relaxes into a symmetric conformation, while retaining the topology of the original knot. This knot is topologically chiral and may be synthesized diastereoselectively through the use of an enantiopure diamine building block.
中文翻译:
控制八交叉分子结的形状和手性
生物分子的打结会影响它们的功能并使它们能够执行新任务。同样,复杂的拓扑结构支撑着许多合成分子机器的运行。生成和控制更复杂架构的能力对于赋予这些机器更高级的功能至关重要。在这里,我们报告了具有八个交叉点的分子结的合成,该分子结由围绕六个模板金属中心编织的单个有机环组成,通过一对简单的二醛和二胺子成分以及单一金属盐的单锅自组装。结的结构和拓扑结构是通过核磁共振光谱、质谱和 X 射线晶体学确定的。脱金属后,纯有机链松弛成对称构象,同时保留原始结的拓扑结构。