当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Au Nanocrystals@Defective Amorphous MnO2 Nanosheets Core/Shell Nanostructure with Effective CO2 Adsorption and Activation toward CO2 Electroreduction to CO
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2021-03-29 , DOI: 10.1021/acssuschemeng.1c00995
Junliang Zhang 1 , Weipei Sun 1 , Lianchun Ding 1 , Zhengcui Wu 1 , Feng Gao 1
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2021-03-29 , DOI: 10.1021/acssuschemeng.1c00995
Junliang Zhang 1 , Weipei Sun 1 , Lianchun Ding 1 , Zhengcui Wu 1 , Feng Gao 1
Affiliation
![]() |
CO2 electroreduction (CO2ER) is a promising avenue to convert aerial CO2 into carbonaceous fuels or value-added chemicals. In this work, we constructed Au nanocrystals@defective amorphous MnO2 nanosheets core/shell nanostructure (Au NCs@a-MnO2 NSs) with tunable lateral size of nanosheets shell for efficient CO2ER to CO. The good gas-permeable behavior in the special nanocrystals/defective nanosheets core/shell nanostructure expanded the adsorption capacity of CO2 molecules. Au NCs core in Au NCs@a-MnO2 NSs brought about high electrical conductivity and boosted electron transport from the catalyst to adsorbed CO2 molecules, while a-MnO2 NSs shell with large numbers of oxygen defects favored the activation of CO2 molecules for the subsequent reduction reaction. The optimal Au NCs@a-MnO2 NSs with ∼60 nm lateral size of nanosheets shell output the utmost CO faradic efficiency (FECO) of 90.5% at −0.7 V and remained with a high FECO > 80% from −0.6 to −0.8 V. Meanwhile, Au NCs@a-MnO2-60 NSs displayed partial current densities of 3.6 mA cm–2 at −0.7 V and 14.3 mA cm–2 at −1.0 V for CO. It also exhibited outstanding stability with negligibly decreased current densities after 12 h electrocatalysis at −0.5, −0.7, and −0.9 V. The synergy between Au NCs core and a-MnO2 NSs shell is contributed to its prominent activity, selectivity, and stability for CO2ER to CO. This work integrates conductivity promotion and defect engineering by noble-metal@defective amorphous oxide core/shell nanostructure toward improved CO2ER.
中文翻译:
Au纳米晶体@缺陷的无定形MnO 2纳米片具有有效的CO 2吸附和被CO 2电还原为CO活化的核/壳纳米结构
CO 2电还原(CO 2 ER)是将航空CO 2转化为含碳燃料或增值化学品的有前途的途径。在这项工作中,我们构建了Au纳米晶体@有缺陷的无定形MnO 2纳米片核/壳纳米结构(Au NCs @ a-MnO 2 NSs),纳米片的壳的横向尺寸可调,以有效地将CO 2 ER转化为CO。特殊的纳米晶体/缺陷纳米片的核/壳纳米结构扩大了CO 2分子的吸附能力。Au NCs @ a-MnO 2 NSs中的Au NCs核带来高电导率,并促进了电子从催化剂到吸附的CO 2的传输分子,而A-的MnO 2的NS壳具有大量的氧缺陷的青睐CO的活化2分子用于随后的还原反应。纳米片壳横向尺寸约为60 nm的最优Au NCs @ a-MnO 2 NSs在-0.7 V时输出的最高CO法拉第效率(FE CO)为90.5%,并且在-0.6至-0.6 V时保持较高的FE CO > 80% −0.8V。同时,Au NCs @ a-MnO 2 -60 NSs在-0.7 V和14.3 mA cm –2时显示出3.6 mA cm –2的部分电流密度。对于CO在-1.0 V时,它还表现出出色的稳定性,在-0.5,-0.7和-0.9 V电压下进行12 h电催化后,其电流密度可忽略不计。AuNCs核与a-MnO 2 NSs壳之间的协同作用有助于其CO 2 ER对CO具有突出的活性,选择性和稳定性。这项工作通过贵金属@缺陷性无定形氧化物核/壳纳米结构朝着改进的CO 2 ER集成了电导率提升和缺陷工程。
更新日期:2021-04-12
中文翻译:

Au纳米晶体@缺陷的无定形MnO 2纳米片具有有效的CO 2吸附和被CO 2电还原为CO活化的核/壳纳米结构
CO 2电还原(CO 2 ER)是将航空CO 2转化为含碳燃料或增值化学品的有前途的途径。在这项工作中,我们构建了Au纳米晶体@有缺陷的无定形MnO 2纳米片核/壳纳米结构(Au NCs @ a-MnO 2 NSs),纳米片的壳的横向尺寸可调,以有效地将CO 2 ER转化为CO。特殊的纳米晶体/缺陷纳米片的核/壳纳米结构扩大了CO 2分子的吸附能力。Au NCs @ a-MnO 2 NSs中的Au NCs核带来高电导率,并促进了电子从催化剂到吸附的CO 2的传输分子,而A-的MnO 2的NS壳具有大量的氧缺陷的青睐CO的活化2分子用于随后的还原反应。纳米片壳横向尺寸约为60 nm的最优Au NCs @ a-MnO 2 NSs在-0.7 V时输出的最高CO法拉第效率(FE CO)为90.5%,并且在-0.6至-0.6 V时保持较高的FE CO > 80% −0.8V。同时,Au NCs @ a-MnO 2 -60 NSs在-0.7 V和14.3 mA cm –2时显示出3.6 mA cm –2的部分电流密度。对于CO在-1.0 V时,它还表现出出色的稳定性,在-0.5,-0.7和-0.9 V电压下进行12 h电催化后,其电流密度可忽略不计。AuNCs核与a-MnO 2 NSs壳之间的协同作用有助于其CO 2 ER对CO具有突出的活性,选择性和稳定性。这项工作通过贵金属@缺陷性无定形氧化物核/壳纳米结构朝着改进的CO 2 ER集成了电导率提升和缺陷工程。