当前位置:
X-MOL 学术
›
ChemElectroChem
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Stabilization of a 4.7 V High-Voltage Nickel-Rich Layered Oxide Cathode for Lithium-Ion Batteries through Boron-Based Surface Residual Lithium-Tuned Interface Modification Engineering
ChemElectroChem ( IF 3.5 ) Pub Date : 2021-03-26 , DOI: 10.1002/celc.202100125 Wenzhi Wang 1 , Langyuan Wu 1 , Zhiwei Li 1 , Kangsheng Huang 1 , Ziyang Chen 1 , Chen Lv 1 , Hui Dou 1 , Xiaogang Zhang 2
ChemElectroChem ( IF 3.5 ) Pub Date : 2021-03-26 , DOI: 10.1002/celc.202100125 Wenzhi Wang 1 , Langyuan Wu 1 , Zhiwei Li 1 , Kangsheng Huang 1 , Ziyang Chen 1 , Chen Lv 1 , Hui Dou 1 , Xiaogang Zhang 2
Affiliation
Residual lithium on the surface and the resulting side reactions for high-energy-density Ni-rich layered oxide cathodes principally impede their industrial application and trigger safety concerns. Herein, the successful construction of LiBO2−B2O3 co-modified single-crystal LiNi0.6Co0.2Mn0.2O2 (SC-NCM) as a lithium-ion battery (LIB) cathode is reported. Boric acid reacts with the surface residual lithium species to form such uniform coating on the SC-NCM particles, which presents advanced rate and cycling capabilities. As the cathode materials for LIBs, LiBO2−B2O3 co-modified SC-NCM delivers a 141.9 mAh g−1 discharge specific capacity at 5 C between 3.0 and 4.5 V versus Li+/Li with 61.4 % capacity retention after 500 cycles, superior to the 20.8 % retention for the pristine SC-NCM cathode. Besides, the LiBO2-B2O3 protective layer substantially inhibits the unexpected phase transformation, effectively alleviates the mechanical microcracks, and stabilizes the cathode-electrolyte interface, even at an extended operational potential window. The proposed microstructure-modified SC-NCM cathode provides an affordable and feasible design strategy for Ni-rich SC-NCM cathodes towards stable electrochemical performance and prolonged service life at high potential.
中文翻译:
通过基于硼的表面残留锂调谐界面改性工程稳定用于锂离子电池的 4.7 V 高压富镍层状氧化物阴极
表面残留的锂以及由此产生的高能量密度富镍层状氧化物阴极的副反应主要阻碍了它们的工业应用并引发安全问题。本文报道了成功构建 LiBO 2 -B 2 O 3共改性单晶 LiNi 0.6 Co 0.2 Mn 0.2 O 2 (SC-NCM) 作为锂离子电池 (LIB) 正极。硼酸与表面残留的锂物质反应,在 SC-NCM 颗粒上形成这种均匀的涂层,具有更高的倍率和循环能力。作为锂离子电池正极材料,LiBO 2 -B 2 O 3与 Li + /Li相比,共改性 SC-NCM在 5 C 下提供 141.9 mAh g -1放电比容量,500 次循环后容量保持率为 61.4%,优于原始 SC-NCM 的 20.8% 保持率阴极。此外,LiBO 2 -B 2 O 3保护层显着抑制了意外的相变,有效地减轻了机械微裂纹,并稳定了阴极-电解质界面,即使在扩展的操作电位窗口下也是如此。所提出的微结构修饰的 SC-NCM 阴极为富镍 SC-NCM 阴极提供了一种经济可行的设计策略,可在高电位下实现稳定的电化学性能和延长的使用寿命。
更新日期:2021-06-01
中文翻译:
通过基于硼的表面残留锂调谐界面改性工程稳定用于锂离子电池的 4.7 V 高压富镍层状氧化物阴极
表面残留的锂以及由此产生的高能量密度富镍层状氧化物阴极的副反应主要阻碍了它们的工业应用并引发安全问题。本文报道了成功构建 LiBO 2 -B 2 O 3共改性单晶 LiNi 0.6 Co 0.2 Mn 0.2 O 2 (SC-NCM) 作为锂离子电池 (LIB) 正极。硼酸与表面残留的锂物质反应,在 SC-NCM 颗粒上形成这种均匀的涂层,具有更高的倍率和循环能力。作为锂离子电池正极材料,LiBO 2 -B 2 O 3与 Li + /Li相比,共改性 SC-NCM在 5 C 下提供 141.9 mAh g -1放电比容量,500 次循环后容量保持率为 61.4%,优于原始 SC-NCM 的 20.8% 保持率阴极。此外,LiBO 2 -B 2 O 3保护层显着抑制了意外的相变,有效地减轻了机械微裂纹,并稳定了阴极-电解质界面,即使在扩展的操作电位窗口下也是如此。所提出的微结构修饰的 SC-NCM 阴极为富镍 SC-NCM 阴极提供了一种经济可行的设计策略,可在高电位下实现稳定的电化学性能和延长的使用寿命。