当前位置: X-MOL 学术Environ. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Iron Minerals Mediated Interfacial Hydrolysis of Chloramphenicol Antibiotic under Limited Moisture Conditions
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2021-03-19 , DOI: 10.1021/acs.est.1c01016
Dingding Wu 1 , Shuhan Huang 1 , Xuxiang Zhang 1 , Hongqiang Ren 1 , Xin Jin 1 , Cheng Gu 1
Affiliation  

Iron minerals are important soil components; however, little information is available for the transformation of antibiotics on iron mineral surfaces, especially under limited moisture conditions. In this study, we investigated the catalytic performance of four iron minerals (maghemite, hematite, goethite, and siderite) for the hydrolysis of chloramphenicol (CAP) antibiotic at different moisture conditions. All the iron oxides could efficiently catalyze CAP hydrolysis with the half-lives <6 days when the surface water content was limited, which was controlled by the atmospheric relative humidity of 33–76%. Different minerals exhibited distinctive catalytic processes, depending on the surface properties. H-bonding or Lewis acid catalysis was proposed for surface hydrolytic reaction on iron oxides, which however was almost completely inhibited when the surface water content was >10 wt % due to the competition of water molecules for surface reactive sites. For siderite, the CAP hydrolysis was resistant to excessive surface water. A bidentate H-bonding interaction mechanism would account for CAP hydrolysis on siderite. The results of this study highlight the importance of surface moisture on the catalytic performance of iron minerals. The current study also reveals a potential degradation pathway for antibiotics in natural soil, which has been neglected before.

中文翻译:

铁矿物介导氯霉素抗生素在有限水分条件下的界面水解

铁矿物质是重要的土壤成分;然而,关于抗生素在铁矿物表面转化的信息很少,特别是在有限的水分条件下。在这项研究中,我们研究了四种铁矿物(磁赤铁矿、赤铁矿、针铁矿和菱铁矿)在不同水分条件下对氯霉素 (CAP) 抗生素水解的催化性能。当表面水分含量有限时,所有氧化铁都可以有效地催化 CAP 水解,半衰期小于 6 天,大气相对湿度控制在 33-76%。不同的矿物表现出不同的催化过程,这取决于表面特性。氢键或路易斯酸催化被提议用于氧化铁的表面水解反应,然而,当表面水含量 > 10 wt% 时,由于水分子竞争表面反应位点,这几乎完全被抑制。对于菱铁矿,CAP 水解可以抵抗过量的地表水。双齿氢键相互作用机制可以解释菱铁矿上的 CAP 水解。这项研究的结果强调了表面水分对铁矿物催化性能的重要性。目前的研究还揭示了天然土壤中抗生素的潜在降解途径,这在以前一直被忽视。这项研究的结果强调了表面水分对铁矿物催化性能的重要性。目前的研究还揭示了天然土壤中抗生素的潜在降解途径,这在以前一直被忽视。这项研究的结果强调了表面水分对铁矿物催化性能的重要性。目前的研究还揭示了天然土壤中抗生素的潜在降解途径,这在以前一直被忽视。
更新日期:2021-03-19
down
wechat
bug