当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanoscale Magnetization Reversal by Magnetoelectric Coupling Effect in Ga0.6Fe1.4O3 Multiferroic Thin Films
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-03-19 , DOI: 10.1021/acsami.0c21659
Jun Zhang 1, 2, 3 , Wuhong Xue 1, 3 , Tiancong Su 1 , Huihui Ji 1 , Guowei Zhou 1, 3 , Fengxian Jiang 1, 3 , Zhiyong Quan 1, 3 , Xiaohong Xu 1, 3
Affiliation  

The control of magnetism by electric means in single-phase multiferroic materials is highly desirable for the realization of next-generation magnetoelectric (ME) multifunctional devices. Nevertheless, most of these materials reveal either low working temperature or antiferromagnetic nature, which severely limits the practical applications. Herein, we selected room-temperature multiferroic Ga0.6Fe1.4O3 (GFO) with ferrimagnetism to study electric-field-induced nanoscale magnetic domain reversal. The GFO thin film fabricated on the (111)-orientated Nb-doped SrTiO3 single-crystal substrate was obtained through the pulsed laser deposition method. The test results indicate that the thin film not only exhibits ferroelectricity but also ferrimagnetism at room temperature. More importantly, reversible and nonvolatile nanoscale magnetic domains reversal under pure electrical fields is further demonstrated by taking advantage of its ME coupling effect with dependent origins based on iron ions. When providing an appropriate applied voltage, clear magnetic domain structures with large size can be easily manipulated. Meanwhile, the change ratio of the electrically induced magnetizations in the defined areas can reach up to 72%. These considerable merits of the GFO thin film may provide a huge potential in the ME multifunctional devices, such as the multi-value, low-energy-consuming, and nonvolatile memory and beyond.

中文翻译:

Ga 0.6 Fe 1.4 O 3多铁性薄膜中的磁电耦合效应实现纳米级磁化反转。

对于实现下一代磁电(ME)多功能设备,非常需要通过电手段控制单相多铁性材料中的磁性。然而,大多数这些材料显示出较低的工作温度或反铁磁性质,这严重限制了实际应用。在这里,我们选择了具有亚铁磁性的室温多铁性Ga 0.6 Fe 1.4 O 3(GFO),以研究电场引起的纳米级磁畴反转。在(111)取向的Nb掺杂SrTiO 3上制备的GFO薄膜通过脉冲激光沉积法获得单晶衬底。测试结果表明,该薄膜不仅在室温下表现出铁电性,而且还表现出亚铁磁性。更重要的是,在纯电场作用下,可逆和非易失性纳米级磁畴的逆转通过利用其ME耦合效应与基于铁离子的从属来进一步证明。当提供适当的施加电压时,可以轻松操纵大尺寸的清晰磁畴结构。同时,在限定区域内电感应磁化强度的变化率可以达到72%。GFO薄膜的这些相当大的优点可能在ME多功能设备中提供巨大的潜力,例如多值,低能耗,非易失性存储器等。
更新日期:2021-04-21
down
wechat
bug