当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Interfacial Enhancement of Photovoltaic Performance in MAPbI3/CsPbI3 Superlattice
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-03-17 , DOI: 10.1021/acsami.0c22550
Yun-Sim Kim 1 , Chol-Hyok Ri 1 , Un-Hyok Ko 1 , Yun-Hyok Kye 1 , Un-Gi Jong 1 , Chol-Jun Yu 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-03-17 , DOI: 10.1021/acsami.0c22550
Yun-Sim Kim 1 , Chol-Hyok Ri 1 , Un-Hyok Ko 1 , Yun-Hyok Kye 1 , Un-Gi Jong 1 , Chol-Jun Yu 1
Affiliation
![]() |
Perovskite solar cells have continued to fascinate over the past decade due to fast increasing power conversion efficiency and very low fabrication cost but still suffered from poor stability. Interface engineering is evolved to be one of the most promising solutions to the instability problem. In this work, we perform a first-principles study on the MAPbI3/CsPbI3 interface system, aiming at clarifying the underlying mechanism of interfacial enhancement of solar cell performance. We devise the atomistic modeling of superlattices as increasing the number of included unit cells and carry out structural optimizations, revealing that the binding strength between the perovskite layers becomes stronger while the band gap decreases as the supercell size increases. Using enough large supercells of the interface system, we further estimate the formation energies of the interfacial vacancy defects and activation barriers for vacancy-mediated I atom migrations. Our calculations show the shallow transition states for most of the defects and the higher activation barriers for I atom migrations across the interface, providing an evidence of performance enhancement by the interface formation. By giving an insightful understanding of the MAPbI3/CsPbI3 heterojunction, this work definitely contributes to the design of interface systems for high-performance solar cells.
中文翻译:
MAPbI 3 / CsPbI 3超晶格中光伏性能的界面增强
钙钛矿太阳能电池在过去十年中由于快速提高的功率转换效率和非常低的制造成本而继续着迷,但仍遭受着不良的稳定性。接口工程已经发展成为解决不稳定问题的最有希望的解决方案之一。在这项工作中,我们对MAPbI 3 / CsPbI 3进行了第一性原理研究接口系统,旨在阐明太阳能电池性能界面增强的潜在机制。我们设计了随着增加的晶胞数量而对超晶格进行原子建模并进行结构优化的研究,结果表明钙钛矿层之间的结合强度变得更强,而随着超晶胞尺寸的增加,带隙减小。使用足够大的界面系统大单元,我们进一步估计了空位介导的I原子迁移的界面空位缺陷和激活势垒的形成能。我们的计算结果表明,大多数缺陷的过渡态很浅,而I原子在界面上迁移的活化势垒更高,这提供了通过界面形成提高性能的证据。3 / CsPbI 3异质结,这项工作无疑有助于高性能太阳能电池的接口系统设计。
更新日期:2021-03-31
中文翻译:

MAPbI 3 / CsPbI 3超晶格中光伏性能的界面增强
钙钛矿太阳能电池在过去十年中由于快速提高的功率转换效率和非常低的制造成本而继续着迷,但仍遭受着不良的稳定性。接口工程已经发展成为解决不稳定问题的最有希望的解决方案之一。在这项工作中,我们对MAPbI 3 / CsPbI 3进行了第一性原理研究接口系统,旨在阐明太阳能电池性能界面增强的潜在机制。我们设计了随着增加的晶胞数量而对超晶格进行原子建模并进行结构优化的研究,结果表明钙钛矿层之间的结合强度变得更强,而随着超晶胞尺寸的增加,带隙减小。使用足够大的界面系统大单元,我们进一步估计了空位介导的I原子迁移的界面空位缺陷和激活势垒的形成能。我们的计算结果表明,大多数缺陷的过渡态很浅,而I原子在界面上迁移的活化势垒更高,这提供了通过界面形成提高性能的证据。3 / CsPbI 3异质结,这项工作无疑有助于高性能太阳能电池的接口系统设计。