当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
C–H Functionalization via Electrophotocatalysis and Photoelectrochemistry: Complementary Synthetic Approach
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2021-03-16 , DOI: 10.1021/acssuschemeng.0c08434 Tomas Hardwick 1, 2, 3 , Nisar Ahmed 1
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2021-03-16 , DOI: 10.1021/acssuschemeng.0c08434 Tomas Hardwick 1, 2, 3 , Nisar Ahmed 1
Affiliation
Photoelectrochemical (PEC) cells are well documented as an important tool for energy and environmental applications. Most commonly used to produce hydrogen fuel from water splitting, PEC cells have also been directed toward pollutant degradation, carbon dioxide reduction, and production of solar fuels. Their application in organic synthesis, however, remains in its infancy. Motivated by the desire for green and sustainable synthetic methods, the merger of photochemistry and electrochemistry is envisaged to become a new strategy to accompany the modern organic chemists. PEC cells are desirable due to their abundance and convenience, the inexpensive and clean nature of sunlight, and the rich variety of photoelectrode materials and redox mediators, as well as their ability to utilize mild reaction conditions. This perspective describes some of the recent developments in PEC-driven organic synthesis by combining electrochemistry and photoredox catalysis in a single system. Specific emphasis has been given for reactions concerning C–H activations, whereby new chemical bonds are forged, whether they be for the late stage functionalization of interesting compounds or the conjoining of two molecular building blocks. This combination is emerging as a powerful system that can achieve reactions that previous methodologies would find difficult or impossible, and it can do so in an environmentally friendly, energy-saving manner with high atom and step economies.
中文翻译:
通过电光催化和光电化学实现C–H官能化:互补合成方法
光电化学(PEC)电池已被证明是能源和环境应用的重要工具。PEC电池最常用于通过水分解来生产氢燃料,还针对污染物降解,减少二氧化碳和生产太阳能燃料。然而,它们在有机合成中的应用仍处于起步阶段。出于对绿色和可持续合成方法的渴望的推动,光化学和电化学的合并被设想成为伴随现代有机化学家的一种新策略。由于PEC电池的丰富性和便利性,阳光的廉价和清洁特性,光电极材料和氧化还原介体的丰富多样性以及它们利用温和的反应条件的能力,因此它们是理想的。该观点描述了通过在单个系统中结合电化学和光氧化还原催化作用,在PEC驱动的有机合成中的一些最新进展。已特别强调了涉及C–H活化的反应,由此锻造了新的化学键,无论是为了使感兴趣的化合物后期官能化,还是两个分子构件的结合。这种组合正在发展成为一个功能强大的系统,可以实现以前的方法难以或不可能实现的反应,并且可以以环保,节能的方式实现这一目标,并具有高原子效率和阶梯经济性。因此,无论是为了使感兴趣的化合物后期功能化,还是两个分子构件的结合,都将建立新的化学键。这种组合正在发展成为一个功能强大的系统,可以实现以前的方法难以或不可能实现的反应,并且可以以环保,节能的方式实现这一目标,并具有高原子效率和阶梯式经济性。因此,无论是为了使感兴趣的化合物后期功能化,还是两个分子构件的结合,都将建立新的化学键。这种组合正在发展成为一个功能强大的系统,可以实现以前的方法难以或不可能实现的反应,并且可以以环保,节能的方式实现这一目标,并具有高原子效率和阶梯经济性。
更新日期:2021-03-29
中文翻译:
通过电光催化和光电化学实现C–H官能化:互补合成方法
光电化学(PEC)电池已被证明是能源和环境应用的重要工具。PEC电池最常用于通过水分解来生产氢燃料,还针对污染物降解,减少二氧化碳和生产太阳能燃料。然而,它们在有机合成中的应用仍处于起步阶段。出于对绿色和可持续合成方法的渴望的推动,光化学和电化学的合并被设想成为伴随现代有机化学家的一种新策略。由于PEC电池的丰富性和便利性,阳光的廉价和清洁特性,光电极材料和氧化还原介体的丰富多样性以及它们利用温和的反应条件的能力,因此它们是理想的。该观点描述了通过在单个系统中结合电化学和光氧化还原催化作用,在PEC驱动的有机合成中的一些最新进展。已特别强调了涉及C–H活化的反应,由此锻造了新的化学键,无论是为了使感兴趣的化合物后期官能化,还是两个分子构件的结合。这种组合正在发展成为一个功能强大的系统,可以实现以前的方法难以或不可能实现的反应,并且可以以环保,节能的方式实现这一目标,并具有高原子效率和阶梯经济性。因此,无论是为了使感兴趣的化合物后期功能化,还是两个分子构件的结合,都将建立新的化学键。这种组合正在发展成为一个功能强大的系统,可以实现以前的方法难以或不可能实现的反应,并且可以以环保,节能的方式实现这一目标,并具有高原子效率和阶梯式经济性。因此,无论是为了使感兴趣的化合物后期功能化,还是两个分子构件的结合,都将建立新的化学键。这种组合正在发展成为一个功能强大的系统,可以实现以前的方法难以或不可能实现的反应,并且可以以环保,节能的方式实现这一目标,并具有高原子效率和阶梯经济性。