当前位置:
X-MOL 学术
›
Environ. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Circularity of Lithium-Ion Battery Materials in Electric Vehicles
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2021-03-25 , DOI: 10.1021/acs.est.0c07030 Jessica Dunn 1 , Margaret Slattery 1 , Alissa Kendall 1, 2 , Hanjiro Ambrose 2, 3 , Shuhan Shen 2
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2021-03-25 , DOI: 10.1021/acs.est.0c07030 Jessica Dunn 1 , Margaret Slattery 1 , Alissa Kendall 1, 2 , Hanjiro Ambrose 2, 3 , Shuhan Shen 2
Affiliation
Batteries have the potential to significantly reduce greenhouse gas emissions from on-road transportation. However, environmental and social impacts of producing lithium-ion batteries, particularly cathode materials, and concerns over material criticality are frequently highlighted as barriers to widespread electric vehicle adoption. Circular economy strategies, like reuse and recycling, can reduce impacts and secure regional supplies. To understand the potential for circularity, we undertake a dynamic global material flow analysis of pack-level materials that includes scenario analysis for changing battery cathode chemistries and electric vehicle demand. Results are produced regionwise and through the year 2040 to estimate the potential global and regional circularity of lithium, cobalt, nickel, manganese, iron, aluminum, copper, and graphite, although the analysis is focused on the cathode materials. Under idealized conditions, retired batteries could supply 60% of cobalt, 53% of lithium, 57% of manganese, and 53% of nickel globally in 2040. If the current mix of cathode chemistries evolves to a market dominated by NMC 811, a low cobalt chemistry, there is potential for 85% global circularity of cobalt in 2040. If the market steers away from cathodes containing cobalt, to an LFP-dominated market, cobalt, manganese, and nickel become less relevant and reach circularity before 2040. For each market to benefit from the recovery of secondary materials, recycling and manufacturing infrastructure must be developed in each region.
中文翻译:
电动汽车中锂离子电池材料的圆度
电池具有显着减少公路运输温室气体排放的潜力。然而,锂离子电池,特别是正极材料的生产对环境和社会的影响,以及对材料临界性的关注,经常被视为阻碍电动汽车广泛采用的障碍。循环经济战略,例如再利用和再循环,可以减少影响并确保区域供应。为了了解潜在的圆形性,我们对电池组级材料进行了动态全局物料流分析,其中包括用于更改电池阴极化学物质和电动汽车需求的方案分析。按地区和整个2040年得出结果,以估算锂,钴,镍,锰,铁,铝,铜和石墨的潜在全球和区域圆形度,尽管分析集中在阴极材料上。在理想条件下,到2040年,全球淘汰的电池可供应60%的钴,53%的锂,57%的锰和53%的镍。如果当前的阴极化学混合物发展到以NMC 811为主的市场,钴化学方面,到2040年,全球钴的圆形度有可能达到85%。如果市场转向从含钴阴极转移到以LFP为主的市场,则钴,锰和镍的相关性将降低,并在2040年之前达到圆形。市场要从二次材料的回收中受益,必须在每个地区开发回收和制造基础设施。
更新日期:2021-04-20
中文翻译:
电动汽车中锂离子电池材料的圆度
电池具有显着减少公路运输温室气体排放的潜力。然而,锂离子电池,特别是正极材料的生产对环境和社会的影响,以及对材料临界性的关注,经常被视为阻碍电动汽车广泛采用的障碍。循环经济战略,例如再利用和再循环,可以减少影响并确保区域供应。为了了解潜在的圆形性,我们对电池组级材料进行了动态全局物料流分析,其中包括用于更改电池阴极化学物质和电动汽车需求的方案分析。按地区和整个2040年得出结果,以估算锂,钴,镍,锰,铁,铝,铜和石墨的潜在全球和区域圆形度,尽管分析集中在阴极材料上。在理想条件下,到2040年,全球淘汰的电池可供应60%的钴,53%的锂,57%的锰和53%的镍。如果当前的阴极化学混合物发展到以NMC 811为主的市场,钴化学方面,到2040年,全球钴的圆形度有可能达到85%。如果市场转向从含钴阴极转移到以LFP为主的市场,则钴,锰和镍的相关性将降低,并在2040年之前达到圆形。市场要从二次材料的回收中受益,必须在每个地区开发回收和制造基础设施。