当前位置: X-MOL 学术Int. J. Hydrogen Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High chemical stability anion exchange membrane based on poly(aryl piperidinium): Effect of monomer configuration on membrane properties
International Journal of Hydrogen Energy ( IF 8.1 ) Pub Date : 2021-03-26 , DOI: 10.1016/j.ijhydene.2021.02.209
Chuan Long , Zhihua Wang , Hong Zhu

In recent years, ether-free polyaryl polymers prepared by superacid-catalyzed Friedel-Crafts polymerization have attracted great research interest in the development of anion exchange membranes(AEMs) due to their high alkali resistance and simple synthesis methods. However, the selection of monomers for high-performance polymer backbone and the relationship between polymer structure construction and properties need further investigated. Herein, a series of free-ether poly(aryl piperidinium) (PAP) with different polymer backbone steric construction were synthesized as stable anion exchange membranes. Meta-terphenyl, p-terphenyl and diphenyl-terphenyl copolymer were chosen as monomers to regulate the spatial arrangement of the polymer backbone, which tethered with stable piperidinium cation to improve the chemical stability. In addition, a multi-cation crosslinking strategy has been applied to improve ion conductivity and mechanical stability of AEMs, and further compared with the performance of uncrosslinked AEMs. The properties of the resulting AEMs were investigated and correlated with their polymer structure. In particular, m-terphenyl based AEMs exhibited better dimensional stability and the highest hydroxide conductivity of 144.2 mS/cm at 80 °C than other membranes, which can be attributed to their advantages of polymer backbone arrangement. Furthermore, the hydroxide conductivity of the prepared AEMs remains 80%–90% after treated by 2 M NaOH for 1600 h, exhibiting excellent alkaline stability. The single cell test of m-PTP-20Q4 exhibits a maximum power density of 239 mW/cm2 at 80 °C. Hence, the results may guide the selection of polymer monomers to improve performance and alkaline durability for anion exchange membranes.



中文翻译:

基于聚(芳基哌啶)的高化学稳定性阴离子交换膜:单体构型对膜性能的影响

近年来,通过超强酸催化的Friedel-Crafts聚合制备的无醚聚芳基聚合物因其高耐碱性和简单的合成方法而在阴离子交换膜(AEMs)的开发中引起了极大的研究兴趣。然而,需要进一步研究用于高性能聚合物主链的单体的选择以及聚合物结构与性能之间的关系。在此,合成了一系列具有不同聚合物主链空间结构的自由醚聚(芳基哌啶鎓)(PAP)作为稳定的阴离子交换膜。选择间三联苯,对三联苯和二联三苯共聚物作为单体来调节聚合物主链的空间排列,并与稳定的哌啶阳离子束缚以提高化学稳定性。此外,已经应用了多阳离子交联策略来改善AEM的离子电导率和机械稳定性,并与未交联的AEM的性能进行了比较。研究了所得AEM的性能,并将其与其聚合物结构相关联。尤其是,基于间三联苯的AEM与其他膜相比,在80°C下表现出更好的尺寸稳定性和最高的氢氧化物电导率144.2 mS / cm,这可以归因于其聚合物主链排列的优势。此外,用2 M NaOH处理1600 h后,制得的AEM的氢氧化物电导率保持80%–90%,表现出优异的碱性稳定性。m-PTP-20Q4的单电池测试显示最大功率密度为239 mW / cm 并与未交联的AEM的性能进行了比较。研究了所得AEM的性能,并将其与其聚合物结构相关联。尤其是,基于间三联苯的AEM与其他膜相比,在80°C下表现出更好的尺寸稳定性和最高的氢氧化物电导率144.2 mS / cm,这可以归因于其聚合物主链排列的优势。此外,用2 M NaOH处理1600 h后,制得的AEM的氢氧化物电导率保持80%–90%,表现出优异的碱性稳定性。m-PTP-20Q4的单电池测试显示最大功率密度为239 mW / cm 并与未交联的AEM的性能进行了比较。研究了所得AEM的性能,并将其与其聚合物结构相关联。尤其是,基于间三联苯的AEM与其他膜相比,在80°C下具有更好的尺寸稳定性和最高的氢氧化物电导率144.2 mS / cm,这可以归因于其聚合物主链排列的优势。此外,用2 M NaOH处理1600 h后,制得的AEM的氢氧化物电导率保持80%–90%,表现出优异的碱性稳定性。m-PTP-20Q4的单电池测试显示最大功率密度为239 mW / cm 与其他膜相比,基于间三联苯的AEMs具有更好的尺寸稳定性和最高的氢氧化物电导率(在80°C下为144.2 mS / cm),这可以归因于其聚合物主链排列的优势。此外,用2 M NaOH处理1600 h后,制得的AEM的氢氧化物电导率保持80%–90%,表现出优异的碱性稳定性。m-PTP-20Q4的单电池测试显示最大功率密度为239 mW / cm 与其他膜相比,基于间三联苯的AEMs具有更好的尺寸稳定性和最高的氢氧化物电导率(在80°C下为144.2 mS / cm),这可以归因于其聚合物主链排列的优势。此外,用2 M NaOH处理1600 h后,制得的AEM的氢氧化物电导率保持80%–90%,表现出优异的碱性稳定性。m-PTP-20Q4的单电池测试显示最大功率密度为239 mW / cm2在80°C下。因此,该结果可以指导聚合物单体的选择以改善阴离子交换膜的性能和碱性耐久性。

更新日期:2021-05-07
down
wechat
bug