当前位置: X-MOL 学术Quantitative Finance › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
尾部相关律不变风险度量的定量统计稳健性
Quantitative Finance ( IF 1.5 ) Pub Date : 2021-03-26 , DOI: 10.1080/14697688.2021.1892171
Wei Wang 1 , Huifu Xu 2 , Tiejun Ma 1
Affiliation  

在使用经验数据或蒙特卡洛模拟通过诸如条件风险价值 (CVaR) 等尾部相关的法律不变风险度量来估计财务状况的风险时,确保插件估计器的稳健性很重要特别是当数据包含噪声时。Krätschmer等人。[法律不变风险措施的比较和定性稳健性。财务。斯托克。, 2014, 18 , 271–295.] 提出了一个新框架来检验这种估计量在 Orlicz 空间上的尾依赖律不变风险度量的定性稳健性,这比 Cont等人的早期工作更进了一步[风险测量程序的稳健性和敏感性分析。数量。金融, 2010, 10, 593–606] 用于研究风险测量程序的稳健性。在本文中,我们遵循这一研究流,提出了一种量化方法,用于验证尾依赖律不变风险度量的统计稳健性。我们的方法的一个显着特点是我们使用 Fortet-Mourier 度量来量化真实潜在概率度量的变化,以分析基于真实数据的风险度量的插件估计器定律与一种基于扰动数据。当风险函数在一类可容许集合上是 Lipschitz 连续的时,这种方法使我们能够为差异推导出一个明确的错误界限。此外,新引入的 Lipschitz 连续性概念使我们能够检查尾部依赖风险度量的稳健程度。最后,





"点击查看英文标题和摘要"

更新日期:2021-03-26
down
wechat
bug